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■ There have been many erroneous prescientific and c ommonsense inductions. We want to understand why 

people believe in wrong theories. My hypothesis is that mistaken inductions are due not only to the 
lack of facts, but also to the poor description of existing facts and to implicit knowledge that is 
transmitted socially. This article presents several  experiments the aim of which is to validate this 
hypothesis by using machine-learning and data-minin g techniques to simulate the way people build 
erroneous theories from observations.  

Why True Wrong Inductions? 

Previous attempts to clarify why certain events wen t wrong, for instance why nuclear plants 
have burst or why airplanes have crashed, typically  included person-based or system-based 
explanations (Reason 1990). Person-based approaches  frequently incriminated “aberrant” mental 
processes of an individual due to inattention, forg etfulness, negligence, carelessness, or 
recklessness. System-based approaches implicated so cial constraints that made people 
exhausted or led to miscommunication. In a way, all  those explanations tend to assume no 
deliberation; they put the blame either on persons in extraordinary circumstances or on 
societies. However, past experience has proven that  people may make erroneous decisions even 
when they have goodwill, when they make all the nec essary efforts, and when there is no 
stress, no time pressure, or no social constraints.  In some situations, humans appear to be 
blind to what they see or know; the facts are there , and they just do not take advantage of 
the empirical evidence. In logical words, induction s, that is, reasoning from particulars, 
may be wrong not only for psychological, physiologi cal, or sociological reasons but also 
because implicit knowledge biases our common sense.  I postulate here that what went wrong may 
be the way people induce knowledge from facts, and the causes of those errors are due not 
only to mistakes or lapses but also to implicit cul tural background that might bias 
inductions. My aim here is to use machine-learning techniques to regenerate erroneous 
inductions and to highlight the possible causes of wrongness.  
 This study focuses on the reconstruction of variou s old inductive theories that have, at 
least at some point in the past, been recognized as  possibly true. Many theories that were 
based on empirical evidence and that today are reco gnized as being wrong, such as the theory 
of “caloric” (heat considered as a substantial flui d) or the theory of “ether” (the medium 
filling the empty space through which heat and ligh t were supposed to propagate) in ancient 
physics, seemed very convincing in the past. Clever  scholars and scientists have sincerely 
believed in those theories. One could equally well imagine that most of our present 
scientific knowledge might be considered erroneous in the future; many currently accepted 
conceptions may or will be proven false. 
 The origin of errors in induction is partly due to  the lack of information; when a fact is 
unknown, the theoretical consequences of such a fac t cannot be perceived. In addition, the 
state of the art may render observations difficult.  For instance, thanks to the development 
of optics in the 17th century, Galileo was able to make certain observations in astronomy 
that were not accessible before. However, even thou gh it is possible to derive a correct 
theory from a set of empirical evidence, it may hap pen that only erroneous theories are 
accepted as true. This article will try to understa nd and explain this strange phenomenon, 
using examples drawn from medicine and commonsense reasoning. 



 The first reason for such a study is to observe an d understand how people actually derive 
general theories from facts, and not only to consid er how they should do it. In the future, 
developments in cognitive psychology could be used to test the validity of my model. For the 
moment, I have chosen to deal with prescientific kn owledge to try to explain why some 
misconceptions dominated the world for centuries, e ven though the available data could have 
led to more efficient theories than those that were  accepted. My work is therefore of 
epistemological interest. I am also interested in t he way people in general, and not only 
scientists, speculate from facts. This simulation o f inexact reasoning could have many 
applications in the social sciences, where it could  help to understand social 
representations, how they evolve and the way they s pread. Finally, this research may also 
help explain some of the rhetorical strategies used  by politicians who, in order to convince, 
prefer to give well-chosen examples rather than dem onstrate their point.  
 To simulate the way people think and build wrong t heories from facts, I have used 
artificial intelligence techniques such as machine- learning and data-mining tools to 
automatically reconstruct the pathway leading from the data to the formation of the erroneous 
theory. The key concept is the notion of explanatory power  with which all conflicting 
theories will be compared: this explanatory power e valuates the number of observations that 
could be explained by a given theory, so each of th e different theories generated by an 
inductive engine will be ranked with respect to thi s index. However, implicit information 
related to example description and background knowl edge greatly influences the explanatory 
power. This article investigates the way it leads t o misleading conclusions. More precisely, 
it explores how changing the description language, by adding new features, and modifying the 
background knowledge, by introducing new inference rules, modifies the explanatory power and, 
consequently, the ranks of different conflicting th eories. 
 The first part of the article describes the genera l framework. It introduces the first 
model based on the use of supervised learning techn iques. The second part, titled 
“Discovering the Cause of Scurvy,” provides an exam ple of rational reconstruction of wrong 
medical theories using the first model. This is fol lowed by an application to the social 
sciences, here to model the political beliefs in Fr ance at the end of the 19th century, a few 
months before the Dreyfus affair 1 broke. The model is then extended with a new induc tion 
engine using nonsupervised learning techniques. The  last part of the article, titled 
“Stereotype Extraction," examines this new model. I n the conclusion, I summarize the lessons 
of experiments presented in the article. 

General Framework 

Since my interest is focused on the rational recons truction of inductive reasoning, that is, 
the derivation of general knowledge from facts, I s hall apply inductive machine-learning 
techniques, that is, those that build general knowl edge from facts. Both supervised and 
nonsupervised learning can be used, each of which h as advantages and disadvantages. Although 
supervised learning procedures are more efficient a nd easier to program, they require the 
user to associate a label to each example, which is  not always possible as we shall see in 
the following. In the first and second parts of the  article, the scope is restricted to 
supervised techniques; in the third part, nonsuperv ised learning techniques will be included. 

Sources of Induction 
Whatever technique is applied, a description langua ge is always needed; sometimes, additional 
background knowledge is also necessary. Therefore, the generated theory depends on all this 
additional knowledge, which biases the learning pro cedure. In other words, there is no pure 
induction because the way facts are given to an ind uctive machine considerably influences the 
induced theory.  
 Moreover, many empirical correlations may be obser ved, which lead to many different 
possible theories. Since the aim of most machine-le arning programs is to build efficient and 
complete recognition procedures, that is, that reco gnize all the examples, they tend to 
preclude most of the possible theories, by using ge neral criteria to prune and eliminate 
them. For instance, in case of top-down induction o f decision trees (TDIDT), information 
entropy is a very efficient heuristic that makes th e generated decision tree quite small and 



decreases the number of leaves. The goal here is to tally different: I want to generate all 
possible theories and extract explanatory patterns from the results.  
 More precisely, a set of examples is extracted fro m historical records (for example, cases 
of diseases or news item). These examples are forma lized with an artificial language to 
define a training set; the latter is used by associ ation rule-extraction techniques to induce 
different theories. Then, those theories are ranked  with respect to their relative 
explanation power. This procedure is repeated with new features that enrich the description 
language and with additional inference rules corres ponding to historical implicit knowledge. 
It appears that the new features and the added infe rence rules affect both the induced 
theories and their respective ranks. We are then lo oking for feature and inference rules that 
make the induced theories recreate historical inter pretations. 

Explanatory Power 
As already stated, the key concept here is the noti on of explanatory power drawn from Thagard 
and Nowak (1990): it corresponds to the ratio of th e learning set explained by a theory. The 
inductive engine generates many conflicting theorie s that can be compared with respect to 
their explanatory power. 
 In the case of supervised learning, an example E is said to be covered or explained by a 
theory T if and only if the label associated to the example , that is, class( E), is 
automatically generated by the theory, which means T( E) = class( E). Then, Ep( T), the 
explanatory power of the theory T, is the number of examples belonging to the learni ng set 
that are covered by the theory T:   
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Association Rules 
My experiments make use of the so-called associatio n rule-extraction techniques (Ganascia 
1987; Agrawal, Imielinski, and Swami 1993), the goa l of which is to detect frequent and 
useful patterns in databases and then to generate p roduction rules expressing correlations 
between descriptors. One important point is that, u sing association rule-extraction 
techniques, training examples may be covered by man y extracted patterns, while it is rarely 
the case using classical machine-learning technique s. The result is that almost all 
conflicting hypotheses are extracted, which would n ot be the case with other inductive 
techniques. 

Discovering the Cause of Scurvy 

My first experiment concerns the historic attempt t o discover the cause of scurvy and to 
understand why it took so long to realize that fres h fruit and vegetables could cure the 
disease. Remember that hundreds of thousands of sai lors contracted scurvy and perished in the 
past. Explanations at the time included a “physical  explanation” where the disease was 
thought to be related to a cold temperature or to h umidity, a “physiological explanation” 
making the lack of food responsible, or even a “psy chological explanation” explaining the 
disease as the result of abstinence and the lack of  family life. It was only at the beginning 
of the 20th century with the discovery of the role of vitamin C that physicians knew how to 
cure the disease (Carpenter 1986).  
 I have tried to understand why it was not possible  to induce the correct theory. My 
starting point was the Dictionnaire Encyclopédique des Sciences Médicales  (Mahé 1880), which 
contains relatively precise descriptions of 25 case s of scurvy, and I introduced these 
descriptions in the inductive engine (Corruble and Ganascia 1997). To be precise, I used a 
small description language derived from the natural  language expressions employed in the 
medical encyclopedia to describe the 25 cases. This  language contained the 10 following 
attributes: year, location, temperature, humidity, food-quantity, diet-variety, hygiene, 
type-of-location, fresh-fruit or vegetables, affect ion-severity, each of them taking one or 
more values according to its type. In my experiment , I restricted the induction engine so it 
would generate only those rules ending with the att ribute “affection-severity,” which 



quantifies the evolution of the disease. Note that the same examples may be simultaneously 
covered by multiple association rules, which render  possible the coexistence of different 
explanatory systems. 
 Once those rules had been induced, it was possible  to distribute them into small subsets 
according to the attributes present in their premis es. Each of these subsets corresponded to 
a possible explanation of the disease, since it was  the set of rules ending with the severity 
of the disease that contained a given attribute. Fo r instance, the “diet-variety” set 
corresponded to the theory that explained the evolu tion of the disease in terms of “diet-
variety.” Figure 1 shows the rules generated from t he 25 examples of the encyclopedia, 
classified according to the attributes they contain  in their premises. The results showed 
(see figure 1) that the “best theory,” that is, the  theory with the highest explanatory 
power, was the set of rules containing the attribut e “fresh fruit and vegetable” in its 
premise, since it is the set II of rules that colle ctively have the highest coverage. Note 
that the set coverage may be lower than the sum of the rule coverage because it corresponds 
to the sum of covered examples and double counting is excluded. 
 The automatically generated explanatory patterns a ll correspond to some explanation given 
in the encyclopedia (Mahé 1880). What is more, the explanatory power ranks these five 
explanatory patterns in the same order of preferenc e expressed by the authors of the medical 
encyclopedia, the first being the presence of fresh  fruit and vegetables in the diet, which 
is correct considering the present state of our kno wledge. But the theory considered as the 
most plausible explanation of scurvy at the time, t hat is, the theory of humidity, did not 
appear once in this list.  
 
 
Set I: diet variety.[15] 
R3: IF diet-variety ≥ high THEN disease-severity ≤ 0. [5] 
R4: IF diet-variety ≤ average THEN disease-severity ≥ 3. [4] 
R8: IF diet-variety ≥ average THEN disease-severity ≤ 2. [11] 
Set II: presence (or absence) of fresh fruit and ve getables in the diet. [18] 
R7: IF fresh_fruit/vegetables = no THEN disease-sev erity ≥ 2. [5] 
R10: IF fresh_fruit/vegetables = yes THEN disease-s everity ≤ 2. [13] 
Set III: quantity of food available. [4] 
R2: IF food-quantity ≥ ok THEN disease-severity ≤ 0. [4] 
Set IV: level of hygiene. [8] 
R5: IF hygiene ≤ bad THEN disease-severity ≥ 3. [3] 
R6: IF hygiene ≤ average THEN disease-severity ≥ 2. [4] 
R9: IF hygiene ≥ average THEN disease-severity ≤ 2. [7] 
R12: IF hygiene ≥ good THEN disease-severity ≤ 1. [6] 
Set V: temperature. [9] 
R1: IF location = land, temperature ≥ hot THEN disease-severity ≤ 0. [4] 
R11: IF temperature ≤ severe-cold THEN disease-severity ≥ 1. [5] 

Figure 1. Rules Generated without Background Knowle dge. 

 
 This first result supported the role of artificial  intelligence: a machine was able to 
induce the correct theory while people with the sam e information were not. However, it did 
not explain why, in the past, people adopted the th eory of humidity to explain scurvy. 
Because the goal is to model wrong reasoning and th e way people reason, I considered this 
first result insufficient and therefore tried to un derstand what biased their inductive 
ability. This entailed looking for some implicit me dical theory that could influence 
induction. I found as a candidate the “blocked pers piration theory” that had been prevalent 
in medical schools for centuries. This idea was bas ed on the old theory of fluids introduced 
by Galen (131–201) in the second century and furthe r developed by Santorio Sanctorius (1561–
1636) in the early 1600s. According to this hypothe sis, without excretions and perspiration 
the internal body amasses bad humors, which result in fluid corruption and cause diseases. 
Since humidity and bad hygiene tend to block up the  pores of the skin, it makes perspiration 
difficult and consequently leads to accumulation of  bad humors. Furthermore, the lack of 
fresh fruit and vegetables thickens internal humors , which makes their excretion more 
difficult. 



 I translated this theory by introducing production  rules that inferred two new features, 
fluids and perspiration, from existing attributes ( see figure 2). Those rules stipulate that 
the degree of perspiration decreases with humidity and hygiene while the fluids tend to 
become corrupted when the perspiration turns to be heavy or very heavy. As a result, the 
inductive engine induced five more rules (see figur e 3), in addition to the rules generated 
previously. Taking these rules into account, it app eared that the rules containing the 
attribute “humidity” constituted one of the possibl e explanatory patterns whose explanatory 
power was higher than that of the other theories. 
 We have seen here that adding some implicit knowle dge during the inductive process may 
change the results: the theory that appears to prev ail without the background knowledge is 
dominated by another explanation that seems more sa tisfactory in that it explains more 
examples than the first one. 
 
 
IF humidity = high THEN perspiration ≥ hard 
IF hygiene ≥ good, humidity ≤ high THEN perspiration ≤ hard 
IF humidity ≥ very-high THEN perspiration ≥ blocked 
IF perspiration ≤ hard THEN fluids ≤ healthy 
IF fresh_fruit/vegetables = yes THEN fluids ≤ healthy 
IF fresh_fruit/vegetables <> yes, perspiration ≥ blocked THEN fluids ≥ corrupted 
IF hygiene ≤ average, location = sea THEN humidity ≥ very-high 
IF hygiene ≥ good THEN humidity ≤ high 

Figure 2. Rules Translating the “Blocked Perspirati on” Theory. 

 
Set VI: fluid theory. [23] 
IF humidity ≥ high, fresh_fruit/vegetables = unknown THEN diseas e-severity ≥ 2. [4] 
IF humidity ≤ high, hygiene ≥ average THEN disease-severity ≤ 1. [6] 
IF perspiration ≤ hard THEN disease-severity ≤ 1. [6] 
IF fluids ≥ corrupted THEN disease-severity ≥ 2. [9] 
IF fluids ≤ healthy THEN disease-severity ≤ 2. [14] 

Figure 3. New Rules Produced with Domain Knowledge.  

 
 This induction bias was caused both by the way the  rules were induced, that is, by the 
induction engine used, which was based on the notio n of association rules, and by the lack of 
information. More precisely, it was mainly due to t he incomplete description of the examples. 
For instance, diet and the presence of fresh fruit and vegetables were not always mentioned. 
The reason for this was that people only spoke abou t the facts that seemed relevant. It would 
therefore be of interest to compare the way example s are given to some implicit theories, and 
to see if some example sets are more adequate for a  particular theory. My later experiments 
investigate such a comparison. 

Application to the Social Sciences 

In order to confront different inductions with diff erent example sets, I have tried to model 
the way people reason and how preconceived ideas bi as political judgements and the 
interpretation of news items. In this sense, it is an application of artificial intelligence 
techniques to the social sciences and could help to  understand the way people react to 
specific cases. In the past, many mathematical and computer science models have been used in 
sociology, but they have mainly been based on stati stical analysis. My perspective is totally 
different, and the aim is to model the way individu als think and interpret facts with respect 
to the implicit theories they use. In other words, the aim is to model social 
representations, that is, social biases.  
 Additionally, this application is an opportunity t o compare the theories that are induced 
from different data sets and to show how data prese ntation influences the induced knowledge. 
 The example taken here is xenophobia in France at the end of the 19th century. I chose the 
first 10 days of September 1893, a few months befor e the Dreyfus affair broke. Three daily 
newspapers, a conservative one, Le Matin, 2 an antisemitic right-wing one,  La Libre Parole , 3 
and a Catholic one, La Croix, 4 also conservative, were scanned (Ganascia and Velc in 2004). I 



collated articles concerning the dysfunctioning of society, including political scandals, 
corruption, bankruptcies, robberies, and murders. E ach article was viewed as an instance and 
was described using a small representation language  similar to that used in the scurvy 
experiment. This language contains 30 attributes co rresponding to the political commitment of 
the protagonists (socialist, radical, or conservati ve), their religion, national origin, 
ethnic origin, whether they are internationally con nected, and so on. Sets of articles from 
each daily newspaper ( Le Matin ,  La Libre Parole , and  La Croix ) were represented in the same 
way, using the same description language, but they were considered separately, each of them 
constituting a separate learning set.  
 Note that the target is the class variable society _dysfunction, which covers attributes 
such as political scandals, corruption, incompetenc e, acts of violence, and so on. As an 
illustration, here is an induced rule:  

IF respect_legislation = no and connection_with_jew s = yes and connection_with_affairs = yes and 
political_scandal = yes  

THEN society_dysfunction = yes. 

However, my goal was not only to induce rules and t heories, using each of those learning 
sets, but also to examine the role of four differen t implicit theories that, according to 
historians (Taguieff 1998, Bredin 1983), were consi dered at the time to explain social 
disorder. These four theories have been drawn from historical studies and correspond to: 

T1—the deterioration of society by an international  conspiracy of Jews and Freemasons 
T2—the loss of national traditions and qualities  
T3—the incompetence and inability of politicians 
T4—corruption 

 I simplified and translated them into a set of pro duction rules and then looked to see how 
well each learning set, that is, each set of exampl es, corresponded to each theory.  
 My aim here was not only to study the effect of ba ckground knowledge on the explanatory 
power but also to investigate the implicit knowledg e underpinning the examples. This is the 
reason I needed different data sets, which correspo nd here to different sets of articles from 
different daily newspapers. 
 Note that I did not investigate the explanatory pa tterns by themselves, but the hidden 
implicit theory or theories underpinning them. Peop le frequently read newspapers with 
preconceived ideas, and my goal was to identify the se ideas that made the paper easier to 
read. More precisely, for the data sets S1, S2, and  S3 corresponding to the three newspapers 
Le Matin, La Libre Parole ,  and  La Croix,  I induced explanatory patterns, first without theo ry 
(WT), then with each of the four theories T1, T2, T 3, and T4 inserted as background 
knowledge. I thus obtained 3 X 5 theories { Si , T j }, which were induced from one data set S i  
among S1, S2, and S3 with one initial theory Tj ,  among WT, T1, T2, T3, and T4. For each 
induced theory { Si , T j }, I computed the explanatory power of all the expl anatory patterns and 
determined the highest value among them. 
 The results show (see table 1) that the value of t he optimal explanatory power reflects the 
political sympathies of the corresponding newspaper . For instance, corruption and the 
conspiracy theory have a very high relative explana tory power for La Libre Parole,  an 
antisemitic far-right newspaper. On the contrary, t he explanatory power of corruption is 
relatively low for  Le Matin  and  La Croix, two traditional and conservative newspapers. It 
means that corruption and the conspiracy theory are  implicit for most of the readers of La 
Libre Parole,  while neither is implicit for the other two. 
 

Theory/Newspaper WT T1 T2 T3 T4 

La Croix 25 42 44 55 30 

La Libre Parole 38 68 61 38 73 

Le Matin  42 55 47 62 40 

 
Table 1. Variation of the Optimal Explanation Power  with Different Background Theories. 

 
 Incompetence, that is, T3, which had a low value f or  La Libre Parole,  seems to explain many 
examples drawn from Le Matin  and La Croix,  even if it is less significant for La Croix. 
Morality, that is, T2, appears to be more explanato ry than the conspiracy theory, that is, 



T1, for La Croix  while it is the contrary fo r Le Matin.  Since La Croix  is a Roman Catholic 
newspaper and Le Matin  just a conservative one, this difference could be easily 
understandable. For more details concerning this st udy see Ganascia (2005) and Ganascia and 
Velcin (2004). 
 Since it became apparent, when simulating my model  on different data sets with different 
implicit theories, that some data sets can more eas ily be understood with one implicit theory 
than with the others, I concluded that different da ta sets incline to different 
interpretations. Since those implicit theories were  directly related to the political 
sympathies of the daily newspapers from which the e xamples were taken, it validates my model. 
In other words, it explains how examples induce mis representations. Even if none of the 
examples is false, the way they are represented, th e lack of description, and the presence of 
implicit knowledge may influence the induction cons iderably. 
 Since this phenomenon appeared to be crucial in co mmonsense induction, that is, in the way 
people derive knowledge from personal experience, I  tried to model and to generalize it in a 
logical framework. The next section presents this l ogical framework. 

Stereotype Extraction 

The notion of stereotype was introduced by Walter L ippmann in his famous book Public Opinion 
(1922) to characterize the way partial information is crystallized in our mind. Lippmann says 
that each of us builds stereotype folders from part ial information we gather through family 
discussions, school, newspapers, TV, rumors, and so  on. These stereotypes then filter 
information and help to form opinions concerning pu blic events about which we have in general 
no precise knowledge. 
 According to Lippmann’s hypothesis, stereotypes ar e constructed from poorly described data, 
the descriptions of which are mainly implicit. Ther efore, stereotype learning could be seen 
as a case of unsupervised learning from sparsely de scribed data.  
 To formalize this idea we have developed an algori thm that learns from very sparsely 
described data (Velcin and Ganascia 2005). The idea  is that each piece of information, a news 
item for instance, corresponds to a fragment of a s tereotype that a learning algorithm would 
be able to rebuild. This algorithm finds a set of f ull descriptions that minimizes a cost 
function, which corresponds to the sum of the dista nces between learning set examples and 
their nearest stereotype. In other words the cost f unction h may be defined as follows: 
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where E is the learning set, S is the set of stereotypes, Cs(e)  the stereotype of S that is 
the closest to e and Ds( e,  e’) the distance between e and e’. Note that the learning set 
examples e are supposed to be sparsely described while stereo types S have to be full 
descriptions, which prohibits a data overfitting. 

Newspaper Stereotypes 
My last experiment involves extracting sets of ster eotypes from news items taken from each of 
the three newspapers mentioned earlier and interpre ting them with respect to the political 
sympathies of the readers. Depending on the newspap er, the results are quite different. For 
instance, the news from La Libre Parole,  which is a far-right newspaper, generated two 
stereotypes, one of which covers 90 percent of the initial examples. Moreover, it appears 
that only 4 percent of the examples are not covered  by any of the constructed stereotypes. 
The news taken from Le Matin,  a moderate conservative newspaper, generated three  stereotypes 
that are far more balanced, while 16 percent of the  examples are not covered by any of the 
stereotypes. In contrast to  Le Matin, La Libre Parole  appears far more dogmatic.  
 Let us now consider the descriptions of the genera ted stereotypes. The main stereotype of 
La Libre Parole corresponds to a man who is socialist, internationa list, antipatriotic, has 
connections with Jews and Protestants, is corrupt, anticlerical, involved in freemasonry, and 
is immoral. The second stereotype, which covers onl y 6 percent of the examples, corresponds 



to a Catholic who is involved in freemasonry. Of th e three stereotypes generated from Le 
Matin, the first corresponds to a socialist who is involve d in freemasonry, is anticlerical, 
a traitor to the nation, all of which corresponds t o the dominant stereotype of La Libre 
Parole.  However, the second and third stereotypes are quit e different: the second corresponds 
to an opportunistic politician who is republican an d incompetent, while the third evokes 
health problems that affected the French president at this time.  
 Briefly speaking, we built an analysis tool that t akes as input a set of news items and 
that outputs the implicit stereotypes conveyed by t hose news items. More precisely, to be 
understandable, news items refer to stereotypes sha red by the readers while, simultaneously, 
the way the information is given reinforces the ste reotypes that readers have in mind. I 
claim that the stereotype extraction process may he lp to make the stereotypes conveyed by the 
newspapers explicit. 

Conclusion 

The aim of this article was to try to understand wh y we adopt wrong theories even when they 
are contradicted by empirical evidence. Machine-lea rning and data-mining inductions based on 
various data sets can be used to identify different  causes of wrongness. The first is related 
to the language used to describe examples, that is,  to the set of categories in which we 
classify and describe factual evidence. The second concerns the background knowledge, and 
corresponds to the hidden implicit theories that un derpin possible conceptualization. The 
third is the incomplete description of facts. This was the case in the experiments presented 
in this article: the cause of scurvy and xenophobia  in France at the end of the 19th century. 
In all cases, it appears that example descriptions were very sparse, which made different 
interpretations possible. For instance, in the scur vy example, diet was not always explicitly 
mentioned in the description of all the case studie s. This is why, given the prevailing 
blocked perspiration theory, the explanatory power of the humidity attribute passes above the 
explanatory power of attributes relative to the pre sence of fruit and vegetables in the diet. 
Lastly, the news items that are published in newspa pers may influence the reader and 
contribute to the building of certain specific ster eotypes. 
 More generally, the article endeavors to elucidate , with the use of AI techniques, one 
particular cause of wrongness, that is, erroneous i nduction. Other works elicit what makes 
some people successful at a given time while others , or the same people at different times, 
fail. For instance Dörner’s Logic of Failure  (Dörner 1996) observes behaviors of individuals 
confronted with complex tasks, for example, playing  SimCity, and extracts psychological 
presages of success or failure. According to Dörner , it appears that self-confidence in a 
priori theories is responsible for many failures. M y purpose here was to show why a priori 
theories, that is, preconceptions and mental stereo types due to education or culture, are not 
only misleading because they are erroneous; they al so make people unable to interpret new 
contradictory facts; in other words, they make peop le blind to the outside world. This is not 
only of theoretical interest; it might help prevent  errors and wrongness. 
 In conclusion, I can offer a word of warning about  induction in daily life. We must bear in 
mind the influence of culture on the categories we use to understand examples and the impact 
of education on our background knowledge. Furthermo re, our mental stereotypes bias our 
perception of reality. Lastly, our personal experie nce of life determines the very types of 
examples that we consider. 

Note. 

1. The Dreyfus affair was a political scandal that divided France at the end of the 19th century, when  a 
young Jewish officer was accused of treason because  of his ethnic origins. 

2. Le Matin, daily newspaper from September 1, 1893, to Septembe r 10, 1893.  

3. La Libre Parole, daily newspaper from September 1, 1893, to Septembe r 7, 1893. 

4. La Croix,  daily newspaper from September 1, 1893, to Septemb er 10, 1893. 
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