Practical block sequence alignment with moves

Julien Bourdaillet and Jean-Gabriel Ganascia

Pierre and Marie Curie University
LIP6 - Computer Science Departement
8 rue du Capitaine Scott - 75015 Paris - France
{julien.bourdaillet,jean-gabriel.ganascia}@ip6.fr

Abstract. In this paper we study a sequence alignment problem motivated by
textual genetic criticisma humanities discipline where the notion of edit distance
with moves has been rediscovered by philologists. We present a fdromutd

the problem and show that the usual notion of edit distance with moves does
not address it correctly because it is harder. We present a heulipbiGttam

for this problem and compare it with a greedy algorithm which computesdihe e
distance with moves. We show that our algorithm is superior for this taslookb
sequence alignment with moves.

1 Introduction

In this paper we study a sequence alignment problem motiiatean application in
humanities (presented in Section 5.2). The problem is défazefollows. LetA =
1,02, ..., G = [Gi]1<i<m @NAB = by, bs, ..., b, = [bj]l1<j<n be two natural lan-
guage texts, i.e. two character sequences, defined ovephabalty.. The usual edit
distance finds the minimal number of edit operations, i.aratter insertions, deletions
or replacements, to transforr into B [1]. The side-effect of this computation is to
produce an alignment betweehand B where each character of one of the sequences
is aligned with a character of the other sequence, or withtileharactek for inserted
and deleted characters.

For natural language sequences, character-level alignimeot adapted because
there exist higher-level structures, i.e. words, sentereparagraphs, which make
this granularity level too low. The notion of character tpte. a substring, is intro-
duced and has to be handled by a natural language alignngenitam. Nevertheless
character-based modifications have still to be handleduseciey occur frequently.

Further, we wish to handle the block move detection betwéemd B because it
brings a significant information on changes between the t&kte introduction of block
moves makes the problem NP-complete under certain condifsee Section 2.1).

This work is motivated by a practical application implyirat the produced algo-
rithm need practical complexities.

Problem Formulation

Definition 1. Let A(A, B) = (INV,DEL,INS, REP, MOV denote an alignment
of two sequenced and B defined over a finite alphabet whereINV, DEL,IN S,
REP and MOV are the sets of invariant, deleted, inserted, replaced aaded blocks
respectively.

Definition 2. A block is defined a&,l4,¢,lg) with—1 <p < |[A|=m,0 <14 <m
and—1 < ¢ < |B| = n,0 < lp < n. This specifies that the substriagp..p + 14 — 1]

in the first sequence is related to the substri®fg..q + {5 — 1] in the second sequence.
The type of relation between both substrings is defined byehehey belong to in
A(A, B). A block having eithep or ¢ equal to—1 represents an insertion or a deletion
respectively; in this casé, or (g are set ta) respectively.

These definitions do not specify the optimality criterionaof alignment. This can
be done by reformulate the problem as a multiobjective dptitiron problem whose
goal is to find an alignment(A, B) = (INV,DEL,INS, REP, MOV with the 12
following criteria, where equations 2 and 3 are parametric:

Maximize the sum of the size of invariant blocks:

D R o
(p,la,q.l)EINV

Minimize the sum of the size of other blocks:

minzg = Z la+1p (2)
(p,la,q,lp)eS
with § = (DEL,INS, REP, MOV)

Maximize the average size of blocks:

Z:(p,lA,q,lB)eS la+1p
S| 3)

with S = (INV,DEL,INS,REP, MOV)
and|.S| the number of blocks i¥

maxys =

Maximize the ratio of moved blocks among non-invariant kic

Z(PJA-,QJB)EJWOV la+1p

max z; = @
Z(P’lA’q,lB)G(DEL,INS',RE‘P.,MOV) la+1p
— Maximize the ratio of replaced blocks among deleted andiedélocks:
la+1
max zp = 2 (p,la,als)EREP B -

2 (piaain)e(DELINS.REP) LA+ 1B

Equations 1 and 2 are similar to the classical global aligrtrpeoblem [2], intro-
ducing a term for moves. Equation 3 specifies that we wish taiwlsharacter blocks of
maximal size in order to avoid the fragmentation of the afignt in small blocks. For
molecular sequence alignment, this is traditionally agteby the introduction ofap
penalties Equations 4 and 5 allow the ordering between preferredimeariant blocks:
moved blocks are preferred over other non-invariant blbgcause they capture a sig-
nificant information between and B; and replacements are preferred over deletions

and insertions because they enable the pairing of two blotksand B whereas dele-
tions and insertions do not.

This formulation enables a clear definition of the problenfpatunately it does not
provide a way to solve it. A solutiod (A, B) to the problem is a set of points over the
two sequencesgl and B which partition them in blocks; if the number of such points
were known, the positions of the points and the type of bldbky define would be
the decision variables of the multiobjective optimizatigmeblem. But this number is
unknown and the space of possibilities is clearly expoaébcause it is the set of
possible partitions oft and B. Finally this formulation does not provide a way to find
them, it only allows to characterize and compare solutidlevertheless equations 1-5
are used to define a single objective function in Section 3.

Further, it must be noted that this formulation is only a mMadé¢he problem, which
is to pair text blocks where these pairings have tedrmantically validThat is, we wish
to discover relations between text blocks which are valid selevant at the natural
language semantic level. Hence, the model is one possibteufation of the problem,
others are possible but we claim that this one is valuable.

Section 2 presents related works on textual alignment winenes are considered.
In Section 3 we demonstrate the NP-completeness of thegimoby reducing it to the
block edit model of Lopresti and Tomkins [3]. We present dgogthm in Section 4
and evaluate it in Section 5. Finally we conclude in Section 6

2 Background

The usual notion of edit distance is not general enough talbahis problem. Fur-
ther, because the longest common subsequence problenrectidstantiation of this
notion, it can not be used directly to model it [4].

We present below several models directly related to ourlprob

2.1 Edit Distance with Moves

Tichy was the first to introduce the edit distance with blockves [5]. Shapira and
Storer proved the NP-completeness of this problem and gaapproximation algo-
rithm called GREEDY [6].

Character deletions and insertions and block moves aneedidor a cost of 1; this
cost function enables a block move for a small cost. The gdalminimize the number
of operations to transform one string into another. Theywgdothat the computation
of the optimal alignment is NP-complete and gave an appration algorithm called
GREEDY which approximates the edit distance with moves w@pdonstant logarithmic
factor. Ifn is the number of optimal blocks atithe length of the longest optimal block,
then GREEDY identifie®)(n log [) blocks.

This modelization of the alignment by GREEDY involves theation of character
blocks with the block move operator. But the two other opasatlo not involve the cre-
ation of blocks, hence there are no constraint for the faonaif deleted and inserted
blocks and this results in “fragmented” alignments (sediGe&.1).

Further, GREEDY has time complexity i@(mn) which becomes very quickly
impractical even for small sequences.

2.2 Block Edit Distance

Lopresti and Tomkins introduced block edit distance [3]t Ueand B be two strings
defined over an alphabét. A t-block substring family of4, Af, = {AM, ..., A®},

is defined as a multiset containimgsubstrings of4. In the same wayB|; denotes a
t-block substring family ofB. BecauseA|, and B|; are multisets, substrings can be
repeated several times.

If the substrings inA|; do not overlap, the family is said to lsjoint If each
character of4 is contained in some substring, the family represersverof A. The
notation C is used if one family must be a cover @hdtherwise. And D is used if a
family must be disjointD otherwise. For example, if the first substring family must b
a disjoint cover and the second only a cover, the model is¢#@D-D.

A distance between two substrings4fand B is introduced such that:

dist: {i,j]1 <i<j<|A|} x {k,]1 <k <I<|B|} >R (6)

Finally we can define the block edit distanBeas follows:

t
— mi i] . ; () pgle@@)
B= min AI\Itl,lg\t olenél(lt) {t.cblock + ; dist(A", B)} @)
This corresponds to the best way to choose two substrindiésmf A and B and
to pair each member ofl|; with some member oB|; such that the cost induced by
pairings be minimal. Pairing cost is baseddint plus a per-block costy; k.

This model is a meta-model which depends on the requirenframgtringsA and/or
B to be disjoint and/or a cover. The generality of the modelesfrom the fact that the
requirements for and/orB to be disjoint and/or a cover are not specified by equation
7. Hence, depending on the application studied, the metdehis instantiated in a
model where requirements are specified by the application.

When at least one of the two substrings is unconstrainedieither disjoint nor a
cover, orCD, the problem is proved to have either cubic- or biquad+tatie algorithm
in function of the size of the input. In other cases, Loprast Tomkins proved that the
problem is NP-complete.

2.3 Other Models

A distance measuring the number of character which have ttetsted inA in order
that all remaining substrings be also substring€3dé presented in [7]. Their greedy
algorithm, with time complexity irO(mn), is the following: find the longest prefix of
A ending ini which matches a substring &f, then this is repeated with the remaining
suffix of A (i.e. A[i + 1..]m|]) until no matching is possible. This algorithm does not
identify invariant blocks from moved blocks and its comjitigxs quadratic.

An 1.5 approximation algorithm for sorting by transposisdi.e. moves) with time
complexity inO(mn) is proposed in [8]. It is based on the assertion fBas a permu-
tation of A: this assertion is very strong and can not be applied in osg.ca

This model is generalized with the rearrangement distanesepted in [9].

3 Model

From Lopresti and Tomkins’ proof that their block edit modeNP-complete for cer-
tain variants, we can state that:

Theorem 1. Block sequence alignment with moves problem is NP-complete

Proof. The problem can be reduced to the following: identify and paly invariant
and moved blocks where blocks do not have to caveand B but must be disjoint.
Then deletions and insertions can be deducted as blockslewtified as invariant or
moved (replacements can be omitted because they are emuitala deletion plus an
insertion). This problem is to find @D-CD alignment which has been proved to be
NP-complete by Lopresti and Tomkins.

Because of the NP-completeness of the problem, two optamlmifto solve it: we
can either find an approximation algorithm or a heuristiogtgm. Shapira and Storer
derive a simple greedy approximation algorithm for editatise with moves: this prob-
lem is a single-objective optimization problem and the a¢idn of greedy algorithm
is natural. For a multiobjective optimization problem,réhés no simple way to derive
a greedy algorithm. Lopresti and Tomkins’ block edit mod®is single-objective also.
They propose polynomial-time algorithms for non NP-cortgheersions of the prob-
lem but do not consider NP-complete versions. These twdesinlgjective optimization
models are suitable for theoretical studies but do not teatind! properties which are re-
quired by the problem.

As shown in Section 1, we have a multiobjective optimizawoblem but the set
of decision variables is unknown, hence classical numlemesthods can not be used to
solve it. Nevertheless from these objective functionsnglsiobjective function can be
derived in order to evaluate solutions in a mono-dimengdispace: equations 1-5 can
be combined in the following simple way.

Equations 1 and 2 can be combined and normalized as follows:

maxz = 5 with S = (DEL,INS, REP, MOV (8)
The 5 equations induced by equation 3 can be combined ancatipeth as follows:
(Zs us)
maxy = $ with S = (INV,DEL,INS, REP, MOV) 9)

wheremax(.S) returns the size of the largest block inside SeEquations 8 and 9 are
normalized between 0 and 1. Equations 4 and 5 are combinedéanident way:

max z = # (20)

Finally a similarity function can be formulated as:

sim(A, B) = max (c1x + coy + ¢32) (11)
With0 <es << <l,aa+ca+e3=1

[Pre—processing]

[Repeated block identification]e

[Repeated block alignment]

[Recursive step]—

[Non-repeated block deductio%

Fig. 1. Algorithm

Equation 11 is a simple normalized linear combination ofatigms 1-5.c constants
have to be chosen in function of the application but supigyioonstraint between them
clearly state priorities.

4 Algorithm

Our algorithm, named MEDITE, is closely related to fragmalignment commonly
used in bioinformatics [10, 11]. Sequences are processtediirsteps. The first step is
a pre-processing step where character equivalence ckassest. The second step iden-
tifies repeated character blocks betweeand B. The third step aligns these repeated
blocks in order to determine which are invariant and whighrapved. The fourth step
is a recursive iteration of steps 2 and 3 between each pailigrfea blocks during
step 2. The last step is the deduction of insertions, deletmd replacements. Figure 1
presents the algorithm.

4.1 Pre-processing

Sequences can optionally be pre-processed in the followang In natural language
sequences, there exist classes of characters which migharsédered as equivalent:
identical upper- and lower-case characters (i.e. “D” arf}l,‘@ccentuated or not charac-
ters (i.e. ‘€” and “e") and separators (i.e. “?” and “1"). Upper-casédet are converted
to their lower-case version, accentuated characters t@noentuated and all separators
are converted to the dot character (“."). Hence sequeAcasd B can be pre-processed
with these equivalence classes in linear time. This pregesing step allows, in further
steps, the matching of blocks with differences for a smathpotational cost.

To illustrate the algorithm, we use the following example alignment of the two
sentences “This morning the cat observed little birds irtttbes.” and “The cat was ob-
serving birds in the little trees this morning, it observédi®for two hours.”. After pre-
processing, sequences become: “this.morning.the.satedd. little.birds.in.the.trees.”
and “the.cat.was.observing.birds.in.the.little.tréfés.morning.it.observed.birds.for.tw-
o.hours.”.

4.2 Repeated Block Identification

The identification of repeated character blocks is done liiding a generalized suffix
tree betweemd and B [12]. This data structure enables to find all repeated cherac
blocks betweend and B. The size of this set of blocks is exponential and only a subse
is interesting: the subset of super maximal exact matchd& (&) defined below [13].

Definition 3. A block(p,4,q,!5) isa SMEM if and only if:

— Alp.p+ 14 — 1] = Blq..q + 14 — 1] (exact matching);

— A[p —1] # Blg — 1] and A[p + 4] # Blq + 5] (maximality);

— and neitherA[p..p + 14 — 1] nor Blq..q + Iz — 1] are included in another maximal
match (super-maximality).

This definition does not prevent overlapping between SMEMgneas SMEMs
have to be non-overlapping in our application. Overlapsraselved heuristically by
cutting them on separators because it is better to have anvird cut than an intra-
word cut in natural language sequences. This first steptsasuiwo listsA’ and B’ of
non-overlapping SMEMs.

After the second step, the following SMEMs are identifiéthié.morning{ the.cat}

(observed. (little.) (birds.in.thel (trees) ” and (the.cat] was.observingbirds.in.the]

little. this.morning| it[observed. birds.for.two.hours.”. The word “birds” re-
peated 3 times does not appear in the SMEM list because thanfroccurrences are

included in longer SMEMs. Had it been in the list, the supeimality would not be
respected.

4.3 Repeated Block Alignment

Each of these SMEMSs can be either an invariant or a moved blduk pairwise align-
ment of SMEMs enables to make the decision; aligned SMEMgamsidered as in-
variants and unaligned as moved. Because the space of lgoslgmments is combi-
natorial, we use an Aheuristic algorithm.

Possible alignments are evaluated with a cost funetitime goal is to find a minimal
cost alignment. This is equivalent to a shortest path probidere the goal state is the
minimal cost alignment. The initial state corresponds togtate where no pairing has
been chosen yet. At each step of the algorithm one pairing beushosen; this is done
by estimating the alignment cost induced by each possililngawith the function
c. Itis a greedy best first search algorithm, so the best grisithosen and then this
process is iterated until the goal is achieved. In order thtfie goal state, the heuristic

has to be admissible, i.e. to never overestimate the distanthe goal. In our case the
heuristic must never overestimate the cost of an alignnveatcdetail below whye is
admissible.

The evaluation of the alignment cost induced by the pairing owith B’ is com-
puted withe(i, 7) which breaks down into the cost of the alignment sodfdr j) and
the heuristic cost of the next blocks to alifity, j), such that(i, j) = g(i,7) + h(i, 7).
These costs are computed using the following formulas:

- U(i,j) = unaligned(A’'[1..i — 1], B'[1..j — 1]) is the set of unaligned blocks
during previous steps, those that have not been paired arsileved as moved.

- 9(1,7) = Zpev(5|0l is the sum of previously unaligned blocks’ size, that is the
alignment cost is charged by moved blocks only.

- SD(i,j) = A'li + 1..|A'|] © B'[j + 1..|B’|] is the symmetric difference of the
next blocks to align during next steps. BlocksS(i, j) are present either only
in A’[i + 1..|A’|] or only in B'[j + 1..|B’|]. It will never be possible to pair them
during next steps and because of that they will be considasemioves and will
charge the alignment cost.

— h(i,7) = Xvesp,j bl is the sum of these blocks’ size, ik(i, j) is the lower
bound of the alignment cost of the next blocks. It never cstreates the alignment
cost because the minimal alignment cost willilig, 7); this is whyc is admissible
and A" finds the optimum.

This computation is equivalent to finding an alignment tisabptimal in the sense of
the maximization of the sum of invariant block size and thaimization of the sum of
moved block size.

In our example, after the third step, the following aligndaicks (in bold) are con-
sidered as invariant; the other squared blocks are m0\[ﬂ1ﬂs.‘morning} the.cat.

(observed,little.] (birds.in.the.] (trees).” and ‘{the.cat.) was.observindbirds.in.the.]
little. | [trees. this.morning] it{observed. birds.for.two.hours.”.

4.4 Recursive Step

The fourth step consists in looping over the pairings r@sylfrom step 3 and in con-
sidering the subsequences between each pair of alignekkbibeese subsequences are
processed again with steps 2 and 3. It allows the pairing wfliiecks which are then
included in the main alignment. This recursive step enablepairing of blocks which
would otherwise have been left unaligned.

In the example, the subsequences “observed.little.” ara ‘@bserving.” occur be-
tween the invariant blocks “the.cat.” and “birds.in.theRecursive step 2 finds the
SMEM *“observ” and recursive step 3 aligns it. Hence the fidigihanent becomes:
“(this.morning|(the.cat)(observied.little.] (birds.in.the.) (trees)” and ‘(the.cat) was.

(observiing. (birds.in.the) (little.] (trees) (this.morning] it.observed.birds.for.two.ho-

urs.”. The moved block “observed.” is lost but the invariatdack “observ” is discov-
ered. The algorithm favours local similarities rather thamg-distance matching.

4.5 Other Block Deduction

Insertions, deletions and replacements can then be dedbetions are non-repeated
blocks inA and insertions are non-repeated block8irFurther, when there is a deleted
blockd in A and an inserted blockin B between two pairs of aligned blocks, and the
ratio |d|/|¢| reaches a threshotd thend and: are transformed in replacementsand
r9, meaning that; has been replaced by. ¢ is arbitrarily set to 0.5.

In the example, the not framed block of the first sequencerisidered as a deletion
and the three not framed blocks of the second sequence asiglemsd as insertions.

Finally, a post-processing step enables to recover blatkise original sequences

(i.e. without all separators equivalent to “.” for example)

5 Evaluation

5.1 Synthetic Data

The goal of this experiment is to evaluate the quality of dgoathm MEDITE versus
GREEDY from Shapira and Storer [6] on synthetic data whenfereace alignment
exists. Given a text and a noise model, a second text is geddog altering the first
one; the alignment between the texts is recorded duringlteeation process. Then,
it is possible to evaluate the quality of the aligner by cormggits results with the
reference alignment.

The noise model allows the generation of a modified text frararggyinal text in the
following way. Ratios of insertions, deletions, replacemseand moves on the original
text size are set before processing. Then character bloekspeatedly inserted in the
modified text, deleted in the original text, replaced betweeth texts and shifted from
one position in the original text to another one in the modifiatil ratios are reached.
The positions where operations occur are chosen randowaylépping operations are
not allowed). The operations deal with character blockerathan single characters
in order to simulate real operations on words; the size ofattar blocks is randomly
chosen between 1 and 25 (i.e. single characters are alloDedhg this process the
positions in the original text where deletions occur, theifgans in the modified text
where insertions occur and the positions in both texts whepkacements and moves
occur are recorded. Finally, a reference alignment betweeariginal and the modified
text is produced.

For the experiment we have chosen 4 texts, referred as A, Bd@Daof size 2K,
6K, 18K and 40K characters for the original text. For each, fére modified documents
were generated with the noise model. Then the documentsaligned with MEDITE
and GREEDY, and similarities evaluated using equation&.g-ar this experiment the
similarity measuresim (Equation 11) has been set4én = 0.5z + 0.35y + 0.15z.
Two series of tests with different modification ratios weomducted: in the first one
there are 5 % of insertions, 5 % of deletions, 5 % of replaceésnand 5% of moves,
which means that there is a 20 % difference between origimhhaodified texts; in the
second series, the ratio is set to 10 %, meaning that theréd®@adifference. For each
of the five kinds of character blocks (insertions, deletjioeplacements, moves and
invariants) the accuracy is defined as the number of coyratiined characters divided

by the total number of characters; then the average accigaayculated. The average
runtimes of alignments are also calculated. Table 1 andseptehe average results for
each series of texts and modification ratio with GREEDY andMIEE respectively.

Table 1. Results of the synthetic data alignment with GREEDY

Modification ratio 5% 10 %
Text A B C D A B C D

Averager 0.7592 0.7968 0.8053 0.8051 0.6507 0.6720 0.6689 0.6721
Averagey 0.1939 0.0980 0.0751 0.0435 0.1379 0.1112 0.0669 0.0360
Averagez 0.2288 0.2439 0.2927 0.2692 0.3139 0.2693 0.3475 0.3153
Averagesim 0.4818 0.4693 0.4728 0.4581 0.4207 0.4154 0.4100 0.3959
Average accuracy 0.4845 0.5202 0.4335 0.4695 0.4528 0.4882064 0.4448
Average runtime Omn 3s Omn 50s 6mn 50s 31mn 28s Omn 7s 1mn 57s55416h 3mn

Table 2. Results of the synthetic data alignment with MEDITE

Modification ratio 5% 10 %
Text A B C D A B C D

Averagez 0.7509 0.7410 0.7391 0.7422 0.5144 0.5133 0.4982 0.5040

Averagey 0.4847 0.3360 0.2705 0.2583 0.4031 0.3075 0.2581 0.2319

Averagez 0.3783 0.3251 0.3488 0.3409 0.3615 0.3447 0.3460 0.3413
Averagesim 0.6017 0.5369 0.5166 0.5127 0.4525 0.4160 0.3914 0.3843
Average accuracy 0.7417 0.7532 0.7548 0.7686 0.6393 0.65@452 0.6590
Average runtime Omn1ls Omnls Omn5s Omn16s Omn1ls Omn1ls Omn 62218mn

Results show that GREEDY and MEDITE present averageof around 0.5 for the
5 % modification ratio and of around 0.4 for the 10 % modificatiatio; but whereas
their average: (ratio of moves and replacements among other modificatisngite
similar, averager andy are very different: for the 10 % modification ratio, average
is of around 0.65 with GREEDY and 0.5 with MEDITE, and avergge of around 0.1
with GREEDY and 0.3 with MEDITE. This means that GREEDY abgnore invariant
blocks among other blocks than MEDITE)(but these blocks are very smail)(and
the resulting alignment is very “fragmented” which is vergrdh to understand for a
human reader. Nevertheless the average accuracy is ofda@odis with GREEDY and
0.65 with MEDITE: this shows that alignments produced by &R are less good
than those by MEDITE. Further, average runtimes are veferdifit between the two
algorithms.

The experiment was realized on a Pentium 4, 2.4 GHz with 1 G&Adl. MEDITE
is implemented in Python, a high-level language good fotqiyping but slow in ex-
ecution. A C language implementation would allow to win adesrof magnitude in
speed. Nevertheless, the speed bottleneck of our algoigthhe calculation of sym-
metric differences between lists of SMEMs (see Sectionw!8¢h is quadratic in the
length of the lists. GREEDY is quadratic in the length of inpequences, that is why it
is very slow.

5.2 Application to Textual Genetic Criticism

The textual alignment problem we addressed is issued frommzahities discipline,
calledtextual genetic criticisgwhich is interested on writers’ drafts [14]. These drafts
come from the writing process, where the author modifiesdxisseveral times. Textual
geneticians study these drafts by comparing them in ordentterstand the genesis
of the text and by using these four operators: insertionigtides, replacements and
moves. It is interesting to note that they rediscovered tit@n of edit distance with
moves by themselves.

For this experiment, different pairs of real versions oft¢e&, B, C and D are
compared instead of synthetic texts. There exists no meferalignment for these text
versions and accuracy can not be evaluated. Table 3 pressots with GREEDY and
MEDITE.

Table 3.Results of the alignment of real data with GREEDY and MEDITE

Modification ratio GREEDY MEDITE
Text A B (3 D A B C D
T 0.3654 0.2657 0.4106 0.7835 0.4934 0.2697 0.4936 0.9223
Y 0.1161 0.0793 0.0784 0.1397 0.3331 0.2488 0.1951 0.2318
z 0.1971 0.2340 0.4096 0.1653 0.2003 0.1676 0.2937 0.2587
sim 0.2529 0.1957 0.2942 0.4655 0.3933 0.2471 0.3591 0.5811
Runtime Omn 18s 12mn5s 1h1Imn 29mn3s Omnl1ls Omn2s Omn6s Omn 2s

Table 3 shows that MEDITE achieves significantly better ltestor all the texts
and criteria (butz) as well as for the aggregated meassire: results are better for
MEDITE. Further the examination of alignments produced IRBEDY are very hard
to understand for a human reader because blocks are verly #iizamakes its results
impractical. Runtimes for texts C and D are very differentiirthe previous experiment
because both versions of text C are very different and batsiorgs of text D are quite
similar.

6

Conclusion

We presented the block sequence alignment with moves pnoéatel showed that it is
harder than the computation of edit distance with movesusethis problem would be
formulated as a multiobjective optimization problem if ibwd not be NP-complete.
We presented a heuristic algorithm which achieves betseittsethan a greedy algorithm
that computes the edit distance with moves on synthetic data

More generally, we think that the usual notion of edit disemith moves is not

rich enough to handle block alignment with moves of naturaguage texts. Further
work is needed to study this problem, specially to find a bednekact algorithm and
to refine our heuristic algorithm.

References

10.

11.

12.
13.

14.

Levenshtein, V.: Binary codes capable of correcting deletionsitioss and reversal. Cy-
bernetics and Control Theofy)(8) (1966) 707-710

Needleman, S., Wunsch, C.: A general method applicable to thehdeasimilarities in the
amino acid sequence of two proteins. Journal of Molecular Biok#{8) (1970) 443—-453
Lopresti, D.P., Tomkins, A.: Block Edit Models for Approximate Sgriatching. Theoret-
ical Computer Scienc&81(1) (1997) 159-179

Bergroth, L., Hakonen, H., Raita, T.: A Survey of Longest Camn$ubsequence Algo-
rithms. In: SPIRE '00: Proceedings of the Seventh International $giam on String Pro-
cessing Information Retrieval. (2000)

Tichy, W.F.: The String-to-String Correction Problem with Block Mave&CM Trans.
Comput. Syst2(4) (1984) 309-321

Shapira, D., Storer, J.A.: Edit Distance with Move Operations. Insigico, A., Takeda,
M., eds.: CPM. Volume 2373 of Lecture Notes in Computer Scienceingr (2002) 85-98
Ukkonen, E.: Approximate string-matching with g-grams and maxinadthes. Theoretical
Computer Scienc82(1992) 191-211

Bafna, V., Pevzner, P.: Sorting by transpositions. SIAM JowhBiscrete Mathematictl
(1998) 224-240

Amir, A., Aumann, Y., Benson, G., Levy, A., Lipsky, O., Porgt, Skiena, S., Vishne, U.:
Pattern matching with address errors: rearrangement distance&XODA '06: Proceedings
of the seventeenth annual ACM-SIAM symposium on Discrete algorititbh Rress (2006)
1221-1229

Wilbur, W.J., Lipman, D.J.: The context dependent comparifdsiological sequences.
SIAM J. Applied Mathematicg4(3) (1984) 557-567

Bray, N., Dubchak, I., Pachter, L.: AVID: A Global Alignmentdgram. Genome Re$3(1)
(2003) 97-102

Ukkonen, E.: On-Line Construction of Suffix Trees. Algorithmieié3) (1995) 249-260
Gusfield, D.: Algorithms on Strings, Trees and Sequences: Gempcience and Computer
Biology. Cambridge University Press (1997)

Deppman, J., Ferrer, D., Groden, M., eds.. Genetic CriticismaxtsTand Avant-textes.
University of Pennsylvania Press (2004)

