
Practical block sequence alignment with moves

Julien Bourdaillet and Jean-Gabriel Ganascia

Pierre and Marie Curie University
LIP6 - Computer Science Departement

8 rue du Capitaine Scott - 75015 Paris - France
{julien.bourdaillet,jean-gabriel.ganascia}@lip6.fr

Abstract. In this paper we study a sequence alignment problem motivated by
textual genetic criticism, a humanities discipline where the notion of edit distance
with moves has been rediscovered by philologists. We present a formulation of
the problem and show that the usual notion of edit distance with moves does
not address it correctly because it is harder. We present a heuristic algorithm
for this problem and compare it with a greedy algorithm which computes the edit
distance with moves. We show that our algorithm is superior for this task of block
sequence alignment with moves.

1 Introduction

In this paper we study a sequence alignment problem motivated by an application in
humanities (presented in Section 5.2). The problem is defined as follows. LetA =
a1, a2, ..., am = [ai]1≤i≤m andB = b1, b2, ..., bm = [bj]1≤j≤n be two natural lan-
guage texts, i.e. two character sequences, defined over an alphabetΣ. The usual edit
distance finds the minimal number of edit operations, i.e. character insertions, deletions
or replacements, to transformA into B [1]. The side-effect of this computation is to
produce an alignment betweenA andB where each character of one of the sequences
is aligned with a character of the other sequence, or with thenull characterǫ for inserted
and deleted characters.

For natural language sequences, character-level alignment is not adapted because
there exist higher-level structures, i.e. words, sentences or paragraphs, which make
this granularity level too low. The notion of character block, i.e. a substring, is intro-
duced and has to be handled by a natural language alignment algorithm. Nevertheless
character-based modifications have still to be handled because they occur frequently.

Further, we wish to handle the block move detection betweenA andB because it
brings a significant information on changes between the texts. The introduction of block
moves makes the problem NP-complete under certain conditions (see Section 2.1).

This work is motivated by a practical application implying that the produced algo-
rithm need practical complexities.

Problem Formulation

Definition 1. LetA(A,B) = (INV,DEL, INS, REP,MOV) denote an alignment
of two sequencesA andB defined over a finite alphabetΣ whereINV,DEL, INS,
REP andMOV are the sets of invariant, deleted, inserted, replaced and moved blocks
respectively.

Definition 2. A block is defined as(p, lA, q, lB) with−1 ≤ p ≤ |A| = m, 0 ≤ lA ≤ m
and−1 ≤ q ≤ |B| = n, 0 ≤ lB ≤ n. This specifies that the substringA[p..p + lA − 1]
in the first sequence is related to the substringB[q..q + lB − 1] in the second sequence.
The type of relation between both substrings is defined by theset they belong to in
A(A,B). A block having eitherp or q equal to−1 represents an insertion or a deletion
respectively; in this case,lA or lB are set to0 respectively.

These definitions do not specify the optimality criterion ofan alignment. This can
be done by reformulate the problem as a multiobjective optimization problem whose
goal is to find an alignmentA(A,B) = (INV,DEL, INS,REP,MOV) with the 12
following criteria, where equations 2 and 3 are parametric:

– Maximize the sum of the size of invariant blocks:

max x1 =
∑

(p,lA,q,lB)∈INV

lA + lB (1)

– Minimize the sum of the size of other blocks:

min xS =
∑

(p,lA,q,lB)∈S

lA + lB (2)

with S = (DEL, INS,REP,MOV)

– Maximize the average size of blocks:

max yS =

∑

(p,lA,q,lB)∈S lA + lB

|S|
(3)

with S = (INV,DEL, INS,REP,MOV)

and|S| the number of blocks inS

– Maximize the ratio of moved blocks among non-invariant blocks:

max z1 =

∑

(p,lA,q,lB)∈MOV lA + lB
∑

(p,lA,q,lB)∈(DEL,INS,REP,MOV) lA + lB
(4)

– Maximize the ratio of replaced blocks among deleted and inserted blocks:

max z2 =

∑

(p,lA,q,lB)∈REP lA + lB
∑

(p,lA,q,lB)∈(DEL,INS,REP) lA + lB
(5)

Equations 1 and 2 are similar to the classical global alignment problem [2], intro-
ducing a term for moves. Equation 3 specifies that we wish to obtain character blocks of
maximal size in order to avoid the fragmentation of the alignment in small blocks. For
molecular sequence alignment, this is traditionally achieved by the introduction ofgap
penalties. Equations 4 and 5 allow the ordering between preferred non-invariant blocks:
moved blocks are preferred over other non-invariant blocksbecause they capture a sig-
nificant information betweenA andB; and replacements are preferred over deletions

and insertions because they enable the pairing of two blocksof A andB whereas dele-
tions and insertions do not.

This formulation enables a clear definition of the problem, unfortunately it does not
provide a way to solve it. A solutionA(A,B) to the problem is a set of points over the
two sequencesA andB which partition them in blocks; if the number of such points
were known, the positions of the points and the type of blocksthey define would be
the decision variables of the multiobjective optimizationproblem. But this number is
unknown and the space of possibilities is clearly exponential because it is the set of
possible partitions ofA andB. Finally this formulation does not provide a way to find
them, it only allows to characterize and compare solutions.Nevertheless equations 1-5
are used to define a single objective function in Section 3.

Further, it must be noted that this formulation is only a model of the problem, which
is to pair text blocks where these pairings have to besemantically valid. That is, we wish
to discover relations between text blocks which are valid and relevant at the natural
language semantic level. Hence, the model is one possible formulation of the problem,
others are possible but we claim that this one is valuable.

Section 2 presents related works on textual alignment wheremoves are considered.
In Section 3 we demonstrate the NP-completeness of the problem by reducing it to the
block edit model of Lopresti and Tomkins [3]. We present our algorithm in Section 4
and evaluate it in Section 5. Finally we conclude in Section 6.

2 Background

The usual notion of edit distance is not general enough to handle this problem. Fur-
ther, because the longest common subsequence problem is a direct instantiation of this
notion, it can not be used directly to model it [4].

We present below several models directly related to our problem.

2.1 Edit Distance with Moves

Tichy was the first to introduce the edit distance with block moves [5]. Shapira and
Storer proved the NP-completeness of this problem and gave an approximation algo-
rithm called GREEDY [6].

Character deletions and insertions and block moves are allowed for a cost of 1; this
cost function enables a block move for a small cost. The goal is to minimize the number
of operations to transform one string into another. They proved that the computation
of the optimal alignment is NP-complete and gave an approximation algorithm called
GREEDY which approximates the edit distance with moves up toa constant logarithmic
factor. Ifn is the number of optimal blocks andl the length of the longest optimal block,
then GREEDY identifiesO(n log l) blocks.

This modelization of the alignment by GREEDY involves the creation of character
blocks with the block move operator. But the two other operators do not involve the cre-
ation of blocks, hence there are no constraint for the formation of deleted and inserted
blocks and this results in “fragmented” alignments (see Section 5.1).

Further, GREEDY has time complexity inO(mn) which becomes very quickly
impractical even for small sequences.

2.2 Block Edit Distance

Lopresti and Tomkins introduced block edit distance [3]. Let A andB be two strings
defined over an alphabetΣ. A t-block substring family ofA, A|t =

{

A(1), ..., A(t)
}

,
is defined as a multiset containingt substrings ofA. In the same way,B|t denotes a
t-block substring family ofB. BecauseA|t andB|t are multisets, substrings can be
repeated several times.

If the substrings inA|t do not overlap, the family is said to bedisjoint. If each
character ofA is contained in some substring, the family represents acoverof A. The
notation C is used if one family must be a cover andC otherwise. And D is used if a
family must be disjoint,D otherwise. For example, if the first substring family must be
a disjoint cover and the second only a cover, the model is called CD-CD.

A distance between two substrings ofA andB is introduced such that:

dist : {i, j|1 ≤ i ≤ j ≤ |A|} × {k, l|1 ≤ k ≤ l ≤ |B|} → ℜ (6)

Finally we can define the block edit distanceB as follows:

B = min
t

min
A|t,B|t

min
σ∈S(t)

{

t.cblock +

t
∑

i=1

dist(A(i), B(σ(i)))

}

(7)

This corresponds to the best way to choose two substring families of A andB and
to pair each member ofA|t with some member ofB|t such that the cost induced by
pairings be minimal. Pairing cost is based ondist plus a per-block costcblock.

This model is a meta-model which depends on the requirementsfor stringsA and/or
B to be disjoint and/or a cover. The generality of the model comes from the fact that the
requirements forA and/orB to be disjoint and/or a cover are not specified by equation
7. Hence, depending on the application studied, the meta-model is instantiated in a
model where requirements are specified by the application.

When at least one of the two substrings is unconstrained, i.e.neither disjoint nor a
cover, orCD, the problem is proved to have either cubic- or biquadratic-time algorithm
in function of the size of the input. In other cases, Loprestiand Tomkins proved that the
problem is NP-complete.

2.3 Other Models

A distance measuring the number of character which have to bedeleted inA in order
that all remaining substrings be also substrings ofB is presented in [7]. Their greedy
algorithm, with time complexity inO(mn), is the following: find the longest prefix of
A ending ini which matches a substring ofB, then this is repeated with the remaining
suffix of A (i.e. A[i + 1..|m|]) until no matching is possible. This algorithm does not
identify invariant blocks from moved blocks and its complexity is quadratic.

An 1.5 approximation algorithm for sorting by transpositions (i.e. moves) with time
complexity inO(mn) is proposed in [8]. It is based on the assertion thatB is a permu-
tation ofA: this assertion is very strong and can not be applied in our case.

This model is generalized with the rearrangement distance presented in [9].

3 Model

From Lopresti and Tomkins’ proof that their block edit modelis NP-complete for cer-
tain variants, we can state that:

Theorem 1. Block sequence alignment with moves problem is NP-complete.

Proof. The problem can be reduced to the following: identify and pair only invariant
and moved blocks where blocks do not have to coverA andB but must be disjoint.
Then deletions and insertions can be deducted as blocks not identified as invariant or
moved (replacements can be omitted because they are equivalent to a deletion plus an
insertion). This problem is to find aCD-CD alignment which has been proved to be
NP-complete by Lopresti and Tomkins.

Because of the NP-completeness of the problem, two options follow to solve it: we
can either find an approximation algorithm or a heuristic algorithm. Shapira and Storer
derive a simple greedy approximation algorithm for edit distance with moves: this prob-
lem is a single-objective optimization problem and the deduction of greedy algorithm
is natural. For a multiobjective optimization problem, there is no simple way to derive
a greedy algorithm. Lopresti and Tomkins’ block edit modelsare single-objective also.
They propose polynomial-time algorithms for non NP-complete versions of the prob-
lem but do not consider NP-complete versions. These two single-objective optimization
models are suitable for theoretical studies but do not handle the properties which are re-
quired by the problem.

As shown in Section 1, we have a multiobjective optimizationproblem but the set
of decision variables is unknown, hence classical numerical methods can not be used to
solve it. Nevertheless from these objective functions, a single-objective function can be
derived in order to evaluate solutions in a mono-dimensional space: equations 1-5 can
be combined in the following simple way.

Equations 1 and 2 can be combined and normalized as follows:

max x =

(

1 +
x1−

∑

S
xS

|A|+|B|

)

2
with S = (DEL, INS,REP,MOV) (8)

The 5 equations induced by equation 3 can be combined and normalized as follows:

max y =

(
∑

S
yS

max(S)

)

5
with S = (INV,DEL, INS,REP,MOV) (9)

wheremax(S) returns the size of the largest block inside setS. Equations 8 and 9 are
normalized between 0 and 1. Equations 4 and 5 are combined in an evident way:

max z =
z1 + z2

2
(10)

Finally a similarity function can be formulated as:

sim(A,B) = max (c1x + c2y + c3z) (11)

with 0 ≤ c3 ≤ c2 ≤ c1 ≤ 1, c1 + c2 + c3 = 1

Pre−processing

Recursive step

Repeated block identification

Repeated block alignment

Non−repeated block deduction

Fig. 1.Algorithm

Equation 11 is a simple normalized linear combination of equations 1-5.c constants
have to be chosen in function of the application but superiority constraint between them
clearly state priorities.

4 Algorithm

Our algorithm, named MEDITE, is closely related to fragmentalignment commonly
used in bioinformatics [10, 11]. Sequences are processed infour steps. The first step is
a pre-processing step where character equivalence classesare set. The second step iden-
tifies repeated character blocks betweenA andB. The third step aligns these repeated
blocks in order to determine which are invariant and which are moved. The fourth step
is a recursive iteration of steps 2 and 3 between each pair of aligned blocks during
step 2. The last step is the deduction of insertions, deletions and replacements. Figure 1
presents the algorithm.

4.1 Pre-processing

Sequences can optionally be pre-processed in the followingway. In natural language
sequences, there exist classes of characters which might beconsidered as equivalent:
identical upper- and lower-case characters (i.e. “D” and “d”), accentuated or not charac-
ters (i.e. “́e” and “e”) and separators (i.e. “?” and “!”). Upper-case letters are converted
to their lower-case version, accentuated characters to non-accentuated and all separators
are converted to the dot character (“.”). Hence sequencesA andB can be pre-processed
with these equivalence classes in linear time. This pre-processing step allows, in further
steps, the matching of blocks with differences for a small computational cost.

To illustrate the algorithm, we use the following example: the alignment of the two
sentences “This morning the cat observed little birds in thetrees.” and “The cat was ob-
serving birds in the little trees this morning, it observed birds for two hours.”. After pre-
processing, sequences become: “this.morning.the.cat.observed.little.birds.in.the.trees.”
and “the.cat.was.observing.birds.in.the.little.trees.this.morning.it.observed.birds.for.tw-
o.hours.”.

4.2 Repeated Block Identification

The identification of repeated character blocks is done by building a generalized suffix
tree betweenA andB [12]. This data structure enables to find all repeated character
blocks betweenA andB. The size of this set of blocks is exponential and only a subset
is interesting: the subset of super maximal exact matches (SMEMs) defined below [13].

Definition 3. A block(p, lA, q, lB) is a SMEM if and only if:

– A[p..p + lA − 1] = B[q..q + lA − 1] (exact matching);
– A[p − 1] 6= B[q − 1] andA[p + lA] 6= B[q + lB] (maximality);
– and neitherA[p..p+ lA − 1] nor B[q..q + lB − 1] are included in another maximal

match (super-maximality).

This definition does not prevent overlapping between SMEMs whereas SMEMs
have to be non-overlapping in our application. Overlaps areresolved heuristically by
cutting them on separators because it is better to have an inter-word cut than an intra-
word cut in natural language sequences. This first step results in two listsA′ andB′ of
non-overlapping SMEMs.

After the second step, the following SMEMs are identified: “
�

�

�

�
this.morning.

�

�

�

�
the.cat.

�

�

�

�
observed.

�

�

�

�
little.

�

�

�

�
birds.in.the.

�

�

�

�
trees. ” and “

�

�

�

�
the.cat. was.observing.

�

�

�

�
birds.in.the.

�

�

�

�
little.

�

�

�

�
trees.

�

�

�

�
this.morning. it.

�

�

�

�
observed. birds.for.two.hours.”. The word “birds” re-

peated 3 times does not appear in the SMEM list because the first two occurrences are
included in longer SMEMs. Had it been in the list, the super-maximality would not be
respected.

4.3 Repeated Block Alignment

Each of these SMEMs can be either an invariant or a moved block. The pairwise align-
ment of SMEMs enables to make the decision: aligned SMEMs areconsidered as in-
variants and unaligned as moved. Because the space of possible alignments is combi-
natorial, we use an A∗ heuristic algorithm.

Possible alignments are evaluated with a cost functionc; the goal is to find a minimal
cost alignment. This is equivalent to a shortest path problem where the goal state is the
minimal cost alignment. The initial state corresponds to the state where no pairing has
been chosen yet. At each step of the algorithm one pairing must be chosen; this is done
by estimating the alignment cost induced by each possible pairing with the function
c. It is a greedy best first search algorithm, so the best pairing is chosen and then this
process is iterated until the goal is achieved. In order to find the goal state, the heuristic

has to be admissible, i.e. to never overestimate the distance to the goal. In our case the
heuristic must never overestimate the cost of an alignment;we detail below whyc is
admissible.

The evaluation of the alignment cost induced by the pairing of A′
i with B′

j is com-
puted withc(i, j) which breaks down into the cost of the alignment so farg(i, j) and
the heuristic cost of the next blocks to alignh(i, j), such thatc(i, j) = g(i, j)+h(i, j).
These costs are computed using the following formulas:

– U(i, j) = unaligned(A′[1..i − 1], B′[1..j − 1]) is the set of unaligned blocks
during previous steps, those that have not been paired and considered as moved.

– g(i, j) = Σb∈U(i,j)|b| is the sum of previously unaligned blocks’ size, that is the
alignment cost is charged by moved blocks only.

– SD(i, j) = A′[i + 1..|A′|] ⊖ B′[j + 1..|B′|] is the symmetric difference of the
next blocks to align during next steps. Blocks inSD(i, j) are present either only
in A′[i + 1..|A′|] or only in B′[j + 1..|B′|]. It will never be possible to pair them
during next steps and because of that they will be consideredas moves and will
charge the alignment cost.

– h(i, j) = Σb∈SD(i,j)|b| is the sum of these blocks’ size, i.e.h(i, j) is the lower
bound of the alignment cost of the next blocks. It never overestimates the alignment
cost because the minimal alignment cost will beh(i, j); this is whyc is admissible
and A∗ finds the optimum.

This computation is equivalent to finding an alignment that is optimal in the sense of
the maximization of the sum of invariant block size and the minimization of the sum of
moved block size.

In our example, after the third step, the following aligned blocks (in bold) are con-
sidered as invariant; the other squared blocks are moved: “

�

�

�

�
this.morning.

�

�

�

�
the.cat.

�

�

�

�
observed.

�

�

�

�
little.

�

�

�

�
birds.in.the.

�

�

�

�
trees..” and “

�

�

�

�
the.cat. was.observing.

�

�

�

�
birds.in.the.

�

�

�

�
little.

�

�

�

�
trees.

�

�

�

�
this.morning. it.

�

�

�

�
observed. birds.for.two.hours.”.

4.4 Recursive Step

The fourth step consists in looping over the pairings resulting from step 3 and in con-
sidering the subsequences between each pair of aligned blocks. These subsequences are
processed again with steps 2 and 3. It allows the pairing of new blocks which are then
included in the main alignment. This recursive step enablesthe pairing of blocks which
would otherwise have been left unaligned.

In the example, the subsequences “observed.little.” and “was.observing.” occur be-
tween the invariant blocks “the.cat.” and “birds.in.the.”. Recursive step 2 finds the
SMEM “observ” and recursive step 3 aligns it. Hence the final alignment becomes:
“
�

�

�

�
this.morning.

�

�

�

�
the.cat.

�

�

�

�
observed.

�

�

�

�
little.

�

�

�

�
birds.in.the.

�

�

�

�
trees.” and “

�

�

�

�
the.cat. was.

�

�

�

�
observ ing.

�

�

�

�
birds.in.the.

�

�

�

�
little.

�

�

�

�
trees.

�

�

�

�
this.morning. it.observed.birds.for.two.ho-

urs.”. The moved block “observed.” is lost but the invariantblock “observ” is discov-
ered. The algorithm favours local similarities rather thanlong-distance matching.

4.5 Other Block Deduction

Insertions, deletions and replacements can then be deduced. Deletions are non-repeated
blocks inA and insertions are non-repeated blocks inB. Further, when there is a deleted
blockd in A and an inserted blocki in B between two pairs of aligned blocks, and the
ratio |d|/|i| reaches a thresholdt, thend andi are transformed in replacementsr1 and
r2, meaning thatr1 has been replaced byr2. t is arbitrarily set to 0.5.

In the example, the not framed block of the first sequence is considered as a deletion
and the three not framed blocks of the second sequence are considered as insertions.

Finally, a post-processing step enables to recover blocks in the original sequences
(i.e. without all separators equivalent to “.” for example).

5 Evaluation

5.1 Synthetic Data

The goal of this experiment is to evaluate the quality of our algorithm MEDITE versus
GREEDY from Shapira and Storer [6] on synthetic data when a reference alignment
exists. Given a text and a noise model, a second text is generated by altering the first
one; the alignment between the texts is recorded during the alteration process. Then,
it is possible to evaluate the quality of the aligner by comparing its results with the
reference alignment.

The noise model allows the generation of a modified text from an original text in the
following way. Ratios of insertions, deletions, replacements and moves on the original
text size are set before processing. Then character blocks are repeatedly inserted in the
modified text, deleted in the original text, replaced between both texts and shifted from
one position in the original text to another one in the modified until ratios are reached.
The positions where operations occur are chosen randomly (overlapping operations are
not allowed). The operations deal with character blocks rather than single characters
in order to simulate real operations on words; the size of character blocks is randomly
chosen between 1 and 25 (i.e. single characters are allowed). During this process the
positions in the original text where deletions occur, the positions in the modified text
where insertions occur and the positions in both texts wherereplacements and moves
occur are recorded. Finally, a reference alignment betweenthe original and the modified
text is produced.

For the experiment we have chosen 4 texts, referred as A, B, C and D, of size 2K,
6K, 18K and 40K characters for the original text. For each text, five modified documents
were generated with the noise model. Then the documents werealigned with MEDITE
and GREEDY, and similarities evaluated using equations 8-11. For this experiment the
similarity measuresim (Equation 11) has been set tosim = 0.5x + 0.35y + 0.15z.
Two series of tests with different modification ratios were conducted: in the first one
there are 5 % of insertions, 5 % of deletions, 5 % of replacements and 5% of moves,
which means that there is a 20 % difference between original and modified texts; in the
second series, the ratio is set to 10 %, meaning that there is a40 % difference. For each
of the five kinds of character blocks (insertions, deletions, replacements, moves and
invariants) the accuracy is defined as the number of correctly aligned characters divided

by the total number of characters; then the average accuracyis calculated. The average
runtimes of alignments are also calculated. Table 1 and 2 present the average results for
each series of texts and modification ratio with GREEDY and MEDITE respectively.

Table 1.Results of the synthetic data alignment with GREEDY

Modification ratio 5 % 10 %
Text A B C D A B C D

Averagex 0.7592 0.7968 0.8053 0.8051 0.6507 0.6720 0.6689 0.6721
Averagey 0.1939 0.0980 0.0751 0.0435 0.1379 0.1112 0.0669 0.0360
Averagez 0.2288 0.2439 0.2927 0.2692 0.3139 0.2693 0.3475 0.3153

Averagesim 0.4818 0.4693 0.4728 0.4581 0.4207 0.4154 0.4100 0.3959
Average accuracy 0.4845 0.5202 0.4335 0.4695 0.4528 0.48820.4064 0.4448
Average runtime 0mn 3s 0mn 50s 6mn 50s 31mn 28s 0mn 7s 1mn 57s 22mn55s 5h 3mn

Table 2.Results of the synthetic data alignment with MEDITE

Modification ratio 5 % 10 %
Text A B C D A B C D

Averagex 0.7509 0.7410 0.7391 0.7422 0.5144 0.5133 0.4982 0.5040
Averagey 0.4847 0.3360 0.2705 0.2583 0.4031 0.3075 0.2581 0.2319
Averagez 0.3783 0.3251 0.3488 0.3409 0.3615 0.3447 0.3460 0.3413

Averagesim 0.6017 0.5369 0.5166 0.5127 0.4525 0.4160 0.3914 0.3843
Average accuracy 0.7417 0.7532 0.7548 0.7686 0.6393 0.65090.6452 0.6590
Average runtime 0mn 1s 0mn 1s 0mn 5s 0mn 16s 0mn 1s 0mn 1s 0mn 6s 0mn21s

Results show that GREEDY and MEDITE present averagesim of around 0.5 for the
5 % modification ratio and of around 0.4 for the 10 % modification ratio; but whereas
their averagez (ratio of moves and replacements among other modifications)is quite
similar, averagex andy are very different: for the 10 % modification ratio, averagex
is of around 0.65 with GREEDY and 0.5 with MEDITE, and averagey is of around 0.1
with GREEDY and 0.3 with MEDITE. This means that GREEDY aligns more invariant
blocks among other blocks than MEDITE (x) but these blocks are very small (y) and
the resulting alignment is very “fragmented” which is very hard to understand for a
human reader. Nevertheless the average accuracy is of around 0.45 with GREEDY and
0.65 with MEDITE: this shows that alignments produced by GREEDY are less good
than those by MEDITE. Further, average runtimes are very different between the two
algorithms.

The experiment was realized on a Pentium 4, 2.4 GHz with 1 GB ofRAM. MEDITE
is implemented in Python, a high-level language good for prototyping but slow in ex-
ecution. A C language implementation would allow to win an order of magnitude in
speed. Nevertheless, the speed bottleneck of our algorithmis the calculation of sym-
metric differences between lists of SMEMs (see Section 4.3)which is quadratic in the
length of the lists. GREEDY is quadratic in the length of input sequences, that is why it
is very slow.

5.2 Application to Textual Genetic Criticism

The textual alignment problem we addressed is issued from a humanities discipline,
calledtextual genetic criticism, which is interested on writers’ drafts [14]. These drafts
come from the writing process, where the author modifies his text several times. Textual
geneticians study these drafts by comparing them in order tounderstand the genesis
of the text and by using these four operators: insertions, deletions, replacements and
moves. It is interesting to note that they rediscovered the notion of edit distance with
moves by themselves.

For this experiment, different pairs of real versions of texts A, B, C and D are
compared instead of synthetic texts. There exists no reference alignment for these text
versions and accuracy can not be evaluated. Table 3 presentsresults with GREEDY and
MEDITE.

Table 3.Results of the alignment of real data with GREEDY and MEDITE

Modification ratio GREEDY MEDITE
Text A B C D A B C D

x 0.3654 0.2657 0.4106 0.7835 0.4934 0.2697 0.4936 0.9223
y 0.1161 0.0793 0.0784 0.1397 0.3331 0.2488 0.1951 0.2318
z 0.1971 0.2340 0.4096 0.1653 0.2003 0.1676 0.2937 0.2587

sim 0.2529 0.1957 0.2942 0.4655 0.3933 0.2471 0.3591 0.5811
Runtime 0mn 18s 12mn 5s 1h 1mn 29mn 3s 0mn 1s 0mn 2s 0mn 6s 0mn 2s

Table 3 shows that MEDITE achieves significantly better results: for all the texts
and criteria (butz) as well as for the aggregated measuresim results are better for
MEDITE. Further the examination of alignments produced by GREEDY are very hard
to understand for a human reader because blocks are very small, this makes its results
impractical. Runtimes for texts C and D are very different from the previous experiment
because both versions of text C are very different and both versions of text D are quite
similar.

6 Conclusion

We presented the block sequence alignment with moves problem and showed that it is
harder than the computation of edit distance with moves because this problem would be
formulated as a multiobjective optimization problem if it would not be NP-complete.
We presented a heuristic algorithm which achieves better results than a greedy algorithm
that computes the edit distance with moves on synthetic data.

More generally, we think that the usual notion of edit distance with moves is not
rich enough to handle block alignment with moves of natural language texts. Further
work is needed to study this problem, specially to find a bounded exact algorithm and
to refine our heuristic algorithm.

References

1. Levenshtein, V.: Binary codes capable of correcting deletions, insertions and reversal. Cy-
bernetics and Control Theory10(8) (1966) 707–710

2. Needleman, S., Wunsch, C.: A general method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of Molecular Biology48(3) (1970) 443–453

3. Lopresti, D.P., Tomkins, A.: Block Edit Models for Approximate String Matching. Theoret-
ical Computer Science181(1) (1997) 159–179

4. Bergroth, L., Hakonen, H., Raita, T.: A Survey of Longest Common Subsequence Algo-
rithms. In: SPIRE ’00: Proceedings of the Seventh International Symposium on String Pro-
cessing Information Retrieval. (2000)

5. Tichy, W.F.: The String-to-String Correction Problem with Block Moves. ACM Trans.
Comput. Syst.2(4) (1984) 309–321

6. Shapira, D., Storer, J.A.: Edit Distance with Move Operations. In Apostolico, A., Takeda,
M., eds.: CPM. Volume 2373 of Lecture Notes in Computer Science., Springer (2002) 85–98

7. Ukkonen, E.: Approximate string-matching with q-grams and maximalmatches. Theoretical
Computer Science92 (1992) 191–211

8. Bafna, V., Pevzner, P.: Sorting by transpositions. SIAM Journalof Discrete Mathematics11
(1998) 224–240

9. Amir, A., Aumann, Y., Benson, G., Levy, A., Lipsky, O., Porat,E., Skiena, S., Vishne, U.:
Pattern matching with address errors: rearrangement distances. In:SODA ’06: Proceedings
of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, ACM Press (2006)
1221–1229

10. Wilbur, W.J., Lipman, D.J.: The context dependent comparisonof biological sequences.
SIAM J. Applied Mathematics44(3) (1984) 557–567

11. Bray, N., Dubchak, I., Pachter, L.: AVID: A Global Alignment Program. Genome Res.13(1)
(2003) 97–102

12. Ukkonen, E.: On-Line Construction of Suffix Trees. Algorithmica14(3) (1995) 249–260
13. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computer

Biology. Cambridge University Press (1997)
14. Deppman, J., Ferrer, D., Groden, M., eds.: Genetic Criticism - Texts and Avant-textes.

University of Pennsylvania Press (2004)

