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ABSTRACT

Since the digital revolution, the volume of images to be processed
has grown exponentially. Interactive search systems have to deal
with these huge databases to remain effective. As the complexity of
on-line learning methods is at least linear in the size of the database,
scalability is the major problem for these methods. Fast retrieval sys-
tems, with index structures for fast navigation, have hence become
like a Holy Grail. In this article, we propose a strategy to overcome
this scalability limitation. Our technique exploits ultra fast retrieval
methods as Locally Sensitive Hashing to speed up active learning
system. Experiments on database of 180K images are reported. The
results show that our method is 45 times faster than state of the art
approaches for similar accuracy.

Index Terms— Image databases, Interactive systems, Learning
systems, Image classification

1. INTRODUCTION

In Content-Based Image Retrieval (CBIR) classification framework,
retrieving classes of images is usually considered as a two-class
problem: the relevant class, the set of images corresponding to the
user query concept, and the irrelevant class composed by the remain-
ing of the database. Active learning is a framework of CBIR [1, 2]
where a user refines his query by iteratively annotating carefully se-
lected images proposed by the system, in a so-called relevance feed-
back loop. Such selection strategies are particularly relevant in im-
age interactive retrieval. The training set is small since only few
annotations should be required from the user [3].

As a consequence, the annotations must provide the best possi-
ble classification. This specific process is called sampling strategy in
[4] and it consists in labeling the most uncertain images. However,
the computational complexity is usually at least linear in the number
of images in the database for each relevance feedback loop. When
the database becomes very large, this scheme becomes intractable
and represents a scalability lock for interactive retrieval systems.

Additionally, interactive approaches [5] require to sort the whole
database with respect to the classification function in order to fo-
cus on the top rank images (which should be most relevant). This
database ranking process also presents a computational complexity
linear in the size of the database and represents another scalability
lock of CBIR systems.

Most of existing approaches focus only on addressing the scal-
ability issue of sampling strategy. In [6], Crucianu et al. propose a
method which associates an M-tree built in the feature space with the
kernel of the Support Vector Machine (SVM) in order to quickly re-
trieve the most uncertain images. In [7], Panda et al. cluster the fea-
ture space. They focus on clusters which are close to SVM boundary
in order to select the most uncertain data for annotation. This last ap-
proach is problematic when considering very large database without

control over the number of clusters.

Concerning database ranking issue, some approaches based on
One-class SVM [8] have been proposed to speed up this process.
However, when considering the number of relevance feedback loops
needed to identify the target class, 2-class SVM with active learning
significantly outperforms One-class SVM. In [7], in order to avoid
ranking all the database, Panda et al. build a new index structure
KDX designed for quickly retrieving the most relevant data farthest
from the SVM boundary.

To the best of our knowledge, only Panda et al. [7] address both
scalability issues of sampling selection and database ranking. In
our previous work [9], we proposed a strategy to quickly select, in a
large database, relevant images to be annotated using an Euclidean
Locally Sensitive Hashing scheme (LSH). Our first results on ad-
dressing both scalability locks of CBIR systems for large databases,
sample selection and data ranking, were promising.

In this paper, we present a new approach which outperforms
the previous one: we build a pool of relevant data on which focus-
ing both sample selection and ranking to make active learning tech-
niques scalable in very large database context; we propose a strategy
to quickly update this pool to explore the feature space; we propose
a brand new LSH scheme defining new hash functions dedicated to
χ2 distance which proved to often lead to better results for image
retrieval task [10]; we test our approach on a database of 180K im-
ages and show how our active learning strategy combined with a
kernel-based SVM can be powerful to address interactive content-
based image retrieval in very large databases.

2. SUB-LINEAR RETRIEVAL SCHEME

In active learning, the user is not interested in the ranking of the
whole database B. Indeed, only top rank of the N most relevant
images, called TOPN, is useful (usually, N is fixed by the user). Why
thus sorting the whole database while the user is only interested in
the top of the search? Our idea is to shortcut this whole ranking
process by selecting a pool of images, called S, which, thanks to
heuristics, are more than likely to be among the TOPN.

2.1. Selection strategy

Let {xi}1,n be the n image indexes of the database. The set of un-
labeled images is denoted by U = {(xi, yi)i=1,n | yi = 0}. A
training set A = {(xi, yi)i=1,n | yi �= 0} is then iteratively built,
where yi = 1 if the image xi is labeled as relevant, yi = −1 if the
image xi is labeled as irrelevant. The classifier is then trained using
these labels at each iteration, and a classification function fA(x) is
determined in order to be able to rank the data. Looking for TOPN
images means finding the N highest values for fA(x). This function
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may be split as:

fA(x) =

|A+|X
p=1

αpK(xp, x)−
|A−|X
n=1

αnK(xn, x)

= fA+(x)− fA−(x) (1)

where A+ denotes positive labeled images and A−, the negative
ones. K is a similarity kernel function. Our strategy is to replace the
fA optimization by focusing on fA+ . More precisely, we assume
that if an image x is close to one positive training example xp ∈ A+,
x has good chances to get a high fA(x) score. The first step of
our process, called selection, is to get images from the unlabeled
image set U , which are close to one of positive training examples
A+. We carry out this step by using a k-NN search for all data in
A+ in order to fast select a pool of images called S ′. Although
many of images in S ′ are not good, they can be easily filtered. The
second step of our strategy, called pruning, aims at filtering S ′. As
already noted, a candidate x may finally have a poor fA(x) score.
This step consists in computing the exact relevance of the selected
images by using fA on the selected images and keeping only the
N most relevant images to build S. As aforementioned, in order
to provide an effective scheme, the k-NN search must be very fast.
Instead of doing a linear scan, we use an efficient indexing scheme
based on LSH , which will be detailed in the next section. As LSH
is based on l1 and l2 metrics, to be consistent the kernel function
has to rely on these distances. However, it was observed that the
quality of retrieval achieved using l2 is not always satisfactory while
χ2 distance proved to often lead to better results for image and video
retrieval tasks [11, 10]. In this paper, we design a brand new LSH
scheme for the χ2 distance which allows us to combine this fast k-
NN search with our kernel based on χ2 distance.

2.2. Annotation strategy

The second scalability issue to address is the sampling stage. The
aim is to select from the unlabeled dataset U the best image xi� to
label. Once the label is assigned, the relevance function should be
improved for the next search run. We consider in this paper the angle
diversity strategy [12]:

i� = arg min
xi∈S

(|fA(xi)|+ (max
xj∈A

|K(xi,xj)|p
K(xi,xi)K(xj ,xj)

))

This strategy consists in looking in the whole database and to select
the most uncertain and the most diversified image. In order to be
scalable, we propose to take benefit from our previous process and
to only look for xi� in S. Indeed, as long as the user is not satis-
fied by the results, this means that the relevance function fA is not
accurate enough to retrieve relevant enough images. Then, the pool
S contains several uncertain images which will help to improve the
relevant function fA. Moreover, in huge databases, the classification
problem considered here is very unbalanced: the size of the relevant
image subset is very small in comparison with the size of the ir-
relevant image subset. It follows that a positively annotated image
is most likely to be close to the center of the relevant class than a
negatively annotated image. By focusing not too far from positive
examples, i.e. in S, we then increase our chances to select positive
images and then we can hope to rebalance the problem.

2.3. Search algorithm

The scheme of our strategy is summarized on Fig.1 and each block
is described as follows: the system is initialized with a query image

Fig. 1. scheme of fast active learning

provided by the user which is added to the training set A (labeled
dataset) to learn a relevant function fA with a SVM classifier (train-
ing). At the same time, this image is used to perform a fast k-NN
search in order to quickly retrieve images of the unlabeled dataset
U close to this first positive example. For the initial loop, the selec-
tion step consists in initializing the pool S ′ with the images retrieved
by the k-NN search. The pool S ′ is then ranked in the pruning block
using the relevant function fA. The pool S is built keeping only the
N most relevant images from S ′. The pruning block ensures that the
size of S remains constant by removing the most irrelevant images.
The TOPN is shown to the user (Retrieved images). The Annotation
strategy block selects the most uncertain image of S to be labeled by
the user. The system iterates as long as the user (User label) is not
satisfied by the search.

After each loop, the relevant function fA is retrained, and thus
the pool S has to be updated. This update of S is done in the
selection block. Images of U close to one of the positive training
examples from A+ should hence be retrieved. However, noticing
that S already contains such images of U from previous iterations,
this step is speeded up by only adding the k-NN of the image if it
has been positively labeled (y > 0) to previous S in order to build
the new S ′. Then, the pruning step, filtering the pool S ′, provides a
new pool S, ranked, which can be presented to the user as interme-
diate result. Finally, the Annotation strategy block selects the most
uncertain images of S to be labeled by the user. The system iterates
as long as the user is not satisfied by the search.

3. INDEXING STRUCTURE

3.1. Indexing scheme

The fundamental principle of LSH relies on the construction of a
hash table using a hash function instead of sorted data. The hash
function is used to map vectors into buckets, such that nearby vectors
are much more likely to map into the same bucket than vectors that
are far apart [13]. To avoid boundary effects, many hash tables are
generated. A search by similarity to query q consists in: -1- finding
the bucket B in which q hashes (for each hash table), -2- selecting
vector candidates in B, -3- returning the k-Nearest Neighbors (kNN)
candidates of q.
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3.2. Hash function for Euclidean metric

Datar et al. [14] proposed hash function for the Euclidean metric
(E2LSH). The hashing function works on tuples of random projec-
tions of the form: ha,c(p) =

¨
a.p+c

W

˝
where a is a random vector

whose each entry is chosen independently from a Gaussian distribu-
tion, c is a real number chosen uniformly in the range [0, W ] and W
specifies a bin width (the size of search window). Each projection
splitting the space by a random set of parallel hyperplanes, the value
of the h indicates in which slice of the space, between two hyper-
planes the vector has fallen. A hash function is then defined by the
concatenation of M functions h. The two parameters chosen for this
hash function are the size of search window W and the number of
projections M .

3.3. Hash function for χ2 distance

In this section, we introduce a new LSH family adapted to χ2 met-
ric. The aim is to work with the χ2 distance keeping the same ef-
ficiency than E2LSH. All the vectors are mapped and clustered in
a space of smaller dimension. The clusterization must ensure that
the probability of two points falling into the same bucket (a cluster
cell) is high when the distance between these two points is small
(and conversely). All the points are projected on random vectors a,
but unlike E2LSH, we split the projected lines (a) with respect to
χ2. The distance between two consequential bounds Xi and Xi+1

on any projected line is constant considering the distance χ2:

∀i χ2(Xi, Xi+1) =

s
(Xi −Xi+1)2

Xi + Xi+1
= W (2)

Of course, these distances are not constant if considering l2 distance.
This simple modification of the slicing on the projected lines

will produce very different partitions of the whole space that the ones
produced by uniform l2 cutting.

This partition in the sense of distance χ2 allows us to ensure that
when two vectors are close (at a distance less than W after mapping),
the probability of collision is higher. We are looking for a sensitive
function ha such as: ha(p) = n iif Xn−1 ≤ a.p < Xn where the
sequence (Xn)n satisfies Eq. (2) with initial value set to zero: X0 =
0. a is a random vector whose each entry is chosen independently
from a Gaussian distribution with positive value N+(0, 1). Eq. (2)
leads to the relation between Xn and Xn−1:

Xn = Xn−1 + W 2

p
8Xn−1/W 2 + 1 + 1

2
(3)

With adding an offset b on the projected line to avoid boundary ef-
fect, we then obtain our sensitive hashing function:

ha,b(p) =

q
8a.p
W2 + 1− 1

2
+ b (4)

for any point p in the space and with b a real number chosen uni-
formly at random in the range [0, 1[. As in E2LSH, W and M (num-
ber of projections) are experimentally set.

4. EXPERIMENTS

Our experiments aim to evaluate how our active learning scheme is
competitive in comparison to state-of-the-art angle diversity (AD)
approach [12] while decreasing the computational complexity of the
search. We also show that our extension of LSH to χ2 distance al-
lows to use kernel on χ2 distance and then to improve search.

Fig. 2. Graphical interface of our system. Top part: retrieved images;
Bottom part: Images selected by the active learner; Green square:
image labeled positively; Red square: image labeled negatively

4.1. Experimental setup

We perform evaluation of our method on a 178,500 images database
obtained by mixing 6 databases: VOC2006 [15], 2007 and 2008 and
TrecVid 2007, 2008 and 2009. We only consider the 10 classes
of VOC2006. We consider all images of VOC belonging to the-
ses 10 classes as relevant and all images of TrecVid as irrelevant.
The goal of our system is to learn a category of images through a
relevance feedback process. The SVM Active learner has no prior
knowledge on the image categories. Each image is represented by a
128-dimension vector concatenating 2 histograms: 64 chrominance
CIEL∗a∗b∗ values and 64 textures from Gabor filters. We evaluate

Gaussian RBF kernel function (K(x, y) = e
−d(x,y)2

2σ2 ) with both l2
and χ2 distance. Each retrieval session is initialized with one rele-
vant and one irrelevant images. At each iteration, one image selected
by the active learner is annotated according to its true label. An il-
lustration of our system RETIN [11] is given on Fig.2. Performances
are evaluated with Mean Average Precision on the TOP200 which
is computed as follows: for each query image, we evaluate the av-
erage precision of the TOPN (APN ), (actually this process is aver-
aged on 100 queries picked at random by class). This is the aver-
age of the precision after that the N first images are retrieved by
the system. Let RN = {r1, r2, . . . , rN} be a ranked version of
the results. At any given rank j, let |C ∩ Rj | be the number of
relevant images in the top j of RN , and C the total number of rel-
evant images in the whole database B. Then APN is defined as:

APN = 1
N

PN
j=1

|Rj∩C|
j

Δ(rj) where Δ(rj) = 1 if rj ∈ C and
0 otherwise. We first compute this mean value over the queries for
each class then we average over the 10 class results to compute the
MAPN . In our experiments, we fixed N = 200. We chose as
parameter |S| = 200, k = 100 NN by search run and L = 100
hash tables of M = 24 projections. For the l2 distance, we take
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W = 1.75 ∗ 105 and σ = 105 for the RBF kernel. For the χ2

distance, we take W = 400 and σ = 200 for the RBF kernel.

4.2. Results

We first evaluate the accuracy of our fast retrieval method using com-
parison with exhaustive (but slow) linear search. Four results are
reported on Table 1: linear search1(LIN) vs our fast scheme (Fast)
combined with two kernels l2-RBF (l2) and χ2-RBF (CHI2).

MAPN=200

Iterations 0 10 20 30 50

LIN l2 9.91 14.83 21.38 25.61 32.05

Fast l2 9.27 16.84 21.61 25.00 30.26

LIN CHI2 13.21 21.62 28.25 33.45 40.42

Fast CHI2 12.87 23.32 28.83 33.07 39.10

Table 1. Performances of our Fast CHI2 method and comparison
with linear scanning (LIN) methods

Whatever the kernel (l2 or CHI2), our fast scheme (Fast) pro-
vides results almost as good as the linear search (LIN), or some-
times even better. At the 50th iteration, our method has an accuracy
of 39.10% and 30.26% respectively for χ2 and l2 distances that is
less than 2% worse than the linear scheme (respectively 40.42% and
32.05%). We can also see that the χ2 distance allows to improve
quality of the ranking about 8% both for linear approach than fast
scheme.

Meanwhile, search time is very different as shown on Fig.3 and
Fig.4. The search speedup is always very high. For a classification
consisting of 50 iterations, with the l2 distance, our algorithm takes
1.79s against 13.91s for the linear method. With the χ2 distance, the
speedup is even greater (0.47s against 21.21s). Finally, our method
is about 8 and 45 times faster than linear method respectively for the
l2-RBF and χ2-RBF kernels.

Fig. 3. Time vs number of iterations for l2-RBF kernels

5. CONCLUSION

In CBIR, image selection and ranking are the two keys for scalabil-
ity issue. In this paper, we proposed a scalable interactive retrieval
strategy. Based on LSH indexing, we quickly select and update a

1using angle diversity sampling

Fig. 4. Time vs number of iterations for χ2-RBF kernels

pool of relevant images, speeding up both sampling and ranking. We
also design a new sub-linear LSH scheme adapted for χ2 distance.
Experimental results on a huge database show that our algorithm
achieves the same accuracy than the reference active methods, while
dividing the computational complexity by 45.
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