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Abstract — The growth of personal image collections has 

boosted the creation of many applications, many of which 
depend on the existence of fast schemes to match similar 
image descriptors. In this paper we present multicurves, a new 
indexing method for multimedia descriptors, able to handle 
high dimensionalities (100 dimensions and over) and large 
databases (millions of descriptors). The technique allows a 
fast implementation of approximate kNN search, and deals 
easily with data updating (insertions and deletions). The index 
is based on the simultaneous use of several moderate-
dimensional space-filling curves. The combined effect of 
having more than one curve, and reducing the dimensionality 
of each individual curve allows overcoming undesirable 
boundary effects. In empirical evaluations, the method 
compares favorably with state-of-the-art methods, especially 
when the constraints of secondary storage are considered.1. 
 

Index Terms — Descriptor indexing, High-dimensional, Image 
collections, Consumer images, Near-duplicate detection.  

I. INTRODUCTION 
Personal multimedia devices like digital cameras and 

multimedia-enabled cell-phones have allowed consumers to 
gather large personal image collections, sometimes reaching 
tens of thousands of items. Many tools have been created to 
deal with those collections, providing services like online 
sharing, photo collage creation, album organization, image 
identification, etc. [1]–[4]. Those applications often face the 
challenge of automatically matching and classifying large 
amounts of visual data. Descriptors are used to summarize 
data content. The descriptors are a more compact and — 
hopefully — semantically richer representation than the raw 
image pixels. They are usually high-dimensional and may 
appear at the rate of hundreds per document. 

A basic operation needed by those applications is the fast 
matching of similar descriptors. That can be provided by 
indexing schemes, but descriptor indexing is challenging from 
both the theoretical and the technical points-of-view, since the 
well-known “curse of dimensionality” makes it inherently 
inefficient. Furthermore, the memory hierarchy brings 
additional constraints to the implementation. 

Many high-dimensional indexing methods have been 
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proposed [5], but few are able to address the practical 
concerns of very large, very high-dimensional descriptor 
databases. To be successful, two basic ideas are usually 
considered: on one hand, querying simultaneously multiple 
subindexes; on the other hand, reducing drastically the 
dimensionality of each subindex [6]–[8]. 

In this paper we propose multicurves, an index able to 
handle high-dimensional image descriptors. Multicurves is 
based on space-filling curves — a technique which has 
attracted substantial attention on the field for its ability to 
create a “vicinity-sensitive” total order on the data, thus 
allowing the adaptation of the efficient one-dimensional 
indexing techniques to multidimensional data. The originality 
of multicurves is to integrate those curves into a very effective 
structure, where a careful combination of multiple moderate-
dimensional curves leads to a large precision improvement. 

The paper is structured as follows: in Section II.A, we 
discuss the subject of image descriptor indexing, exploring 
some general issues and then reviewing the state of the art in 
Section II.B. In Section III we describe multicurves, 
introducing the method and detailing the algorithms for 
construction and search. In Section IV, we show the empirical 
evaluation of multicurves, comparing it to other state-of-the-
art high-dimensional indexing techniques. In Section III.D we 
show an interesting application of the method to the task of 
image identification, i.e., the matching of an original image 
and its (distorted) copies. 

II. INDEXING MULTIMEDIA DESCRIPTORS 

A. Image Descriptor Databases 
The challenge of multimedia retrieval comes, in great part, 

from the large semantic gap between how the data are coded 
and what they represent. Multimedia retrieval seldom uses the 
raw representation of data, and is instead mediated by the use 
of descriptors. Descriptors appear in a large variety of forms 
(color and texture histograms, invariant moments, Fourier 
coefficients, local jets, gradient maps, etc.) but are often of 
vector nature, and frequently, high-dimensional. 

Besides their elevated dimensionality, multimedia databases 
are usually very large and the scenario has worsened by the 
use of local descriptors, which (as we discuss in Section III.D) 
proliferate at the rate of hundreds per document. 

B. Large Scale High-dimensional Indexing 
Descriptor matching is usually performed by an operation 

called kNN search (or k nearest neighbors search), which 
finds, in the database, the descriptors most similar to the query 
descriptor. The simplest solution to kNN search is sequential 



 

scan. Unfortunately, this brute-force solution is acceptable 
only for the smallest of databases, being unfeasible in most 
contexts. The alternative is to use indexing, in order to 
accelerate the search. However, the performance of indexing 
depends greatly on the dimensionality of the data. Search time 
can be made to grow only logarithmically with the size of the 
base, but at the expense of introducing a hidden constant, 
which grows exponentially with dimensionality [5][9]. 

This phenomenon is known as “curse of dimensionality” 
and expresses the difficulty of partitioning the data or the 
space in an efficient way when dimensionality is very high 
[10]. Basically, as dimensionality grows, several counter-
intuitive phenomena appear, all of them detrimental to the 
working of indexes [9]. As far as we know, for over a dozen 
dimensions, no method can reliably perform exact matching 
faster than a simple sequential search. This poses a challenge, 
since descriptors with hundreds of dimensions are usual. 

To solve this dilemma, the methods may trade-off exactness 
for speed. This means that they will find the matching 
descriptor with good probability, but not for sure. In order to 
be of practical interest in the context of large-scale 
multimedia, the scheme must: 

• perform well for high-dimensional data, presenting a 
good trade-off between exactness and speed; 

• adapt well to secondary memory, which in practice 
means that few random accesses must be performed; 

• be dynamic, i.e., allow easy data insertion/ deletion, 
without significant performance degradation. 

Despite the abundant literature on multidimensional 
indexing (for an in-depth account of the bibliography see [5]), 
surprisingly few methods are able to accomplish those 
requirements: many assume implementation in main memory 
(and thus, cheap random access throughout the index), other 
have prohibitive building times, and so on. 

A class of methods which does achieve those goals tries to 
transform the n-dimensional indexing problem into a one-
dimensional indexing problem by using space-filling curves. 

C. Indexing using Space-Filling Curves 
Space-filling curves are fractals whose topological 

dimension is one, but whose Hausdorff dimension is the same 
as their embedding dimension. They are thus able to provide a 
continuous mappings from the unit interval [0; 1] to any unit 
hypercube [0; 1]d. They were introduced by Peano [11] and 
Hilbert [12]. Most space-filling curves are constructed by a 
recursive procedure, in which the space is progressively 
divided into smaller cells, which are then traversed by the 
curve. In the limit, the curve fills the entire space (Fig. 1). 

Though the study of those curves and of their surprising 
properties is fascinating in itself, what concerns us here is their 
ability of inducing a “vicinity-sensitive” total order to the data. 
What we mean by that is that the curve gives the 
multidimensional data a total order which, locally and with 
high-probability, preserves the neighborhood relations of the 
space (putting near in the curve data which are near in the 
space). 

The use of space-filling curves to perform kNN search is 

not new. Apparently Faloutsos [13] was the first to explicitly 
refer to the concept of curves, though earlier authors already 
used the idea of bit shuffling, bit interlacing or bit 
interleaving. There is a space-filling curve concept “hidden” 
in bit shuffling techniques, because interleaving the bits of the 
individual spatial coordinates induces the appearance of a 
fractal curve known as “Z-order curve”. Faloutsos and 
Roseman were the first to suggest that other curves could 
perform better than the Z-order, first proposing the Gray-code 
curve and then the Hilbert curve [14]. 
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Fig. 1. The recursive space-filling Hilbert curve. Three iterations are 
shown: the actual space-filling curve is the infinite limit of those 
iterations. The curve allows mapping an n-dimensional space onto a 1-
dimensional line in a way which, locally, preserves the neighborhood 
relations. 

All those pioneering methods were conceptually very 
simple; they mapped the high-dimensional elements in the 
curve and then performed a straightforward similarity search 
using the one-dimensional position in the curve. 

A good heuristic is to take the nearest elements in the curve 
as the nearest elements in the space. The hypothesis is that 
points that are near to each other in the curve always 
correspond to points that are near to each other in the space. 
Unfortunately, the converse is not true, in the sense that near 
points in the space are not always near in the curve. This is 
because of boundary effects, which tend to put very far apart 
points in certain regions of the curve. The matter is seriously 
aggravated as the dimensionality increases (Fig. 2). 

 
Fig. 2. The problem with boundary effects on the space-filling curves. The 
points in the centre of the space are further apart in the curve than the 
points in the lower-left quadrant. On those circumstances, the 
“neighborhood-preserving” property of the mapping is violated. 

In order to conquer the boundary effects, Megiddo and 
Shaft suggest the use of several curves at once, hoping that, 
for any given query, at least one of them will not pose 
boundary problems. They present the idea in a very general 
way, without describing which curves should be used and how 
they should be made different [15]. Shepherd et al. develop on 
this idea, by specifically recommending the use of several 



 

identical Hilbert curves where different copies of the data 
elements are mapped, after random transformations (rotations 
and translations) [6]. Whether or not the set of transformations 
could be optimized is left unanswered. 

Finally, Liao et al. solve the problem of choosing the 
transformations, by devising the necessary number of curves 
and the optimal set of translations to obtain a bounded 
approximation error in the kNN search [7]. 

A departure from those methods was suggested recently by 
Mainar-Ruiz and Pérez-Cortés [16]. Instead of using multiple 
curves, they propose using multiple instances of the same 
element in only one curve. Before inserting those instances in 
the curve, the algorithm disturbs their position, to give them 
the opportunity of falling into different regions of the curve. In 
that way even if the query falls into a problematic region, 
chances are it will be reasonably near to at least one of the 
instances. This has two advantages: first, a single sorted list 
structure has to be managed; second, at search time, a single 
random access is performed. The main drawback is the 
difficulty in controlling the optimal number of instances per 
element: the method ignores that some regions in the curve are 
much more problematic than others, and simply associates 
each element to the same number of instances. 

III. THE MULTICURVES INDEX 

A. Introduction 
As we have seen in Section II.C, the greatest problem of the 

use of space-filling curves comes from boundary effects 
brought by the existence of “zones of discontinuity” in the 
curves, where the quasi-order-preserving qualities of the 
mapping are broken. Different methods propose different 
solutions, usually through the simultaneous use of multiple 
curves. 

Multicurves is also based on the use of multiple curves, but 
with the important improvement that each curve is only 
responsible for a subset of the dimensions. 

The dimensionality-reduction makes for an efficient 
implementation of the subindex, reducing the effects of the 
“curse of dimensionality”. Because of the exponential nature 
of the “curse” it is more efficient to process several low or 
moderate-dimensional indexes than a single high-dimensional 
one. This is explained by the fact that not only we gain the 
intrinsic advantages of using multiple curves (i.e., elements 
that are incorrectly separated in one curve will probably stay 
together in another), but also, we lower the boundary effects 
inside each one of the curves. 

Multicurves index creation is simple: one subindex (a sorted 
list data structure) is created for each subspace of the data. The 
data points are inserted in all subindexes. For each subindex, 
first the data point is projected onto the associated subspace; 
then the projection is mapped onto a one-dimensional 
extended-key using the space-filling curve; finally a pair 
<extended-key, data> is inserted into the list, which is sorted 
by extended-key. 

Search is done the same way: the query is decomposed into 
several projections (corresponding to the dimensions 

associated to each subindex) and each projection has its 
extended-key computed. Then, for each subindex, we explore 
the elements whose extended-keys are the nearest to the 
corresponding query extended-key (Fig. 5). 

This scheme presents several advantages: 
• the sorted list is the mainly used data structure, and it can 

be handled efficiently (by a B-tree, for example), 
resulting in a disk friendly method; 

• for the same reason, insertions and deletions can be 
handled easily; 

• the offline pre-processing for index construction is 
reasonable, consisting mainly of sorting operations; 

• almost all accesses to the data in the sorted lists are 
sequential, resulting in savings in disk operations, where 
random access is expensive. 

Before detailing the algorithms, a few definitions (Fig. 3): 
• d: the dimensionality of the data elements;  
• c: the number of curves to be used in the index;  
• d[i]: the dimensionality of the ith curve with Σ d[i] = d;  
• A: an association between the dimensions of the data and 

dimensions of the curves, such that the value on A[i][j] 
indicates which data dimension corresponds to the jth 
dimension of the ith curve. E.g., if A[2][3] = 10, it means 
that the 3rd dimension of the 2nd curve is in fact the 10th 
dimension of the data space (Fig. 3); 

• m: the number of bits needed to represent each dimension 
of the data elements, which will correspond to the order 
of the curve to be generated; 

 
Fig. 3. A sample parameterization of the multicurves showing how the 
parameters c, d[i], and the association A determine the dimensions 
considered by each subindex. 

B. Building the Index 
The construction algorithm for multicurves (shown in 

Fig. 4) is relatively simple, since the underlying structure of 
the index is just a set of sorted lists, one for each curve. 

Each data element is decomposed into c projections, 
accordingly to the association of dimensions A. Those 
projections are used to compute the extended-key in each 
curve. The pairs <extended-key, element> are inserted in the 
curves. 

The complexity of the construction depends on the 
underlying structure used to implement the sorted lists. The 
computation of the projections of each element in steps 7–9 
takes, at worst, O(d) operations. The computation of the 
extended-key on line 10 takes O(md) bit operations (see 
Section III.D). Assuming an efficient sorted list structure, 
insertions will take O(log n) steps, where n is the number of 



 

elements in the database. Since we are building c lists, the 
algorithm should take at worst, O(c (nmd + n log n)) steps. 

C. Searching 
The search algorithm is also simple (Fig. 5). We choose, 

beforehand, the number of elements to examine in each 
subindex (which is called probe depth). Then we project the 
query onto the same c subspaces used to build the index. We 
find, on each subindex, the elements nearest to the 
corresponding projection, and keep the k nearest to the query. 
The complexity analysis of the search comparison is easy: the 
construction of the extended-key takes O(md) bit operations 
(see Section III.D). The time spent looking for the values the 
nearest to the extended-key depends on the underlying data  
structure, but generally it can be assumed to take at most 
O(log n) steps, where n is the number of elements in the 
database. This step is prone to be expensive, for here we are 
forced to make at least one random access to the data. The 
complexity of steps 9–15 is known beforehand and grows 
linearly with the number of elements to be examined. The 
expensive operation here is the computation of the distances, 
which takes O(d) arithmetic operations, for the p-norm 
distances (like the Euclidean distance). 

The dimensionality has also a “hidden” influence, in that it 
increases linearly the amount of data which must be 
transferred by the algorithm. This is non-negligible when we 
use secondary storage. 

The whole operation (steps 2–16) is repeated once for every 
subindex, which means a linear growth with this parameter. 

 
The symbols are explained in Section II.A 
points is the list of data elements 
point[i] is the value of the ith dimension of point 
A[][] is an association between the dimensions of the data space and the 

subindexes space as explained in Fig.3 . 
 curves[] is an array of c sorted lists 
projection[] is the projection of point[] onto the subspace of the curve 
GetExtendedKey() is a function which gives the extended-key in the space-

filling curve from the coordinates in the space 
 
BuildMulticurves(c, d[], A[][], m, points)  
 → Returns array of sorted lists 
1. For curve ← 1 to c do 
2.  curves[curve] ←  
    new empty sorted list of pairs <extended_key, point> 
    sorted by extended_key 
3. Next 
4. For each point in points do 
5.  For curve ← 1 to c do 
6.   projection[] ← new array with d[curve] elements 
7.   For dimension ← 1 to d[curve] do 
8.    projection[dimension] ← 
      point[A[curve][dimension]] 
9.   Next 
10.   extended_key ←  
    GetExtendedKey(projection) 
11.   Put the pair <extended_key, point> into 
   the list curves[curve] 
12.  Next 
13. Next 
14. Return curves[]   
Fig. 4. The construction algorithm for multicurves. The algorithm 
decomposes each database point in a set of projections. Each projection is 
inserted into a sorted list, accordingly to its extended key on a space 
filling curve. 

The symbols are explained in Section II.A and Fig. 4  
probe_depth is the number of data items to examine in each curve 
query[i] is the value of the ith dimension of query 
 
SearchMulticurves (c, d[], A[][], m, curves[], probe_depth, k, query)  
 →  Returns a list of k nearest neighbors 
 
1. best ← new empty sorted list of pairs <distance, point> 
   sorted by distance 
2. For curve ← 1 to c do 
3.  projection[] ←new array with d[curve] elements 
4.  For dimension ← 1 to d[curve] do 
5.   projection[dimension] ← query[A[curve][dimension]] 
6.  Next 
7.  extended_key ←  
   GetExtendedKey(projection) 
8.  candidates ←  
   list with the probe_depth  points the nearest to extended_key in 
   the sorted list curves[curve] 
9.  For each candidate in candidates do 
10.   distance ← distance from candidate to query 
11.   If distance < last distance in best then 
12.    Put pair <distance, candidate> in best 
13.   If best has more than k entries then 
14.    Remove last entry in best 
15.  Next 
16. Next 
17 Return best 
Fig. 5. The search algorithm for multicurves. The query point is 
decomposed into a set of projections. Each projection is used to gather a 
number of candidates on the sorted list corresponding to the space filling 
curve associated to that subspace. At the end, the best candidates are 
returned. 

In summary, the time spent on the search grows linearly with 
the number of elements to be examined in each index, the 
number of subindexes and the number of dimensions of the 
data space. It also grows logarithmically with the number of 
elements in the database. 

D. Discussion 
The dimensionality reduction in each subindex is crucial for 

the performance of multicurves. Not only it serves the 
pragmatic purpose of making the index implementation more 
efficient, but it also allows for better comparison of data in 
high-dimensional spaces. On those spaces, it is 
counterproductive to take all dimensions into account all the 
time because at every local cluster, some dimensions act as 
outliers. In a nutshell this means that we cannot assume that 
all dimensions “make sense” throughout the space. This 
somewhat surprising property of high dimensional data had 
already been observed in the field of data mining [17]. By 
putting different dimensions on each subindex, multicurves 
introduces the possibility of ignoring outlier dimensions. 

Any recursive space-filling curve could theoretically be 
used, but in our implementation we have used the Hilbert 
curve, which in comparison with other space-filling curves, 
like the Z-order curve or the Gray-code curve, has better 
clustering properties, mostly because of the absence of distant 
jumps. Compared to those curves, however, the mapping 
between the hyperdimensional coordinates and the extended-
key is much more complex. Fortunately, there is an efficient 
algorithm which uses little memory and can map any curve 
using only O(md) bit operations [18]. 



 

It is not necessary to compute the arbitrary-precision 
version of the curve. If the data coordinates are quantized in m 
bits, a recursive approximation of order m is enough to 
guarantee no loss of precision. 

Any adequate data structure can be used to store the sorted 
lists, the choice being based on practical considerations. 
Normally some flavor of B-tree should be the best solution for 
most database applications. In our test implementations, for 
the sake of simplicity, we have chosen a two-level indexing, 
with the first level fitting entirely in main memory. 

Once the index is built, updating consists simply in 
inserting and removing data from the lists. The ability to do it 
without degrading the index performance depends, of course, 
on the underlying data structure used to implement the lists, 
but, if B-trees are used, the index will be completely dynamic. 

IV. EMPIRICAL EVALUATION 
In this section, we present the empirical performance 

evaluation of multicurves, including the comparison with 
other state-of-art methods.  

A. Experimental Setup 
A standardized experimental setup, accepted by the 

community, is still lacking for the evaluation of high-
dimensional indexing. Therefore, one of the main challenges 
researchers on the subject face is the choice of their databases, 
queries, ground truth and metrics. 

Though early works tended to use synthetic data, following 
a uniform random distribution, it is now generally accepted 
that this is unrealistic and leads to overpessimistic results. 
Therefore, recent works are usually evaluated on real data. 

We have chosen to use databases of SIFT descriptors [19], 
which serve well to our evaluation purposes: they are high-
dimensional (128 dimensions in their standard version), can be 
embedded in a Euclidean space, and, due to their 
effectiveness, are very well established, having been used 
extensively in both research and industrial applications. 

We have created two databases. The Small Database is 
composed by the SIFT descriptors generated from image 
transformations of a selection of 100 original images. Each 
image suffered three rotations, four scale changes, four non-
linear photometric changes (gamma corrections), two 
smoothings and two shearings — a total of 15 transformations. 
Each transformed image had its SIFT descriptors calculated 
and aggregated into a database of 2 871 300 descriptors. The 
queries are the SIFT descriptors calculated from the original 
images, amounting to 263 968 descriptors. 

The Large Database is composed by SIFT descriptors 
generated from about 10 000 original images and amounts to 
21 591 483 descriptors. The queries are the SIFT descriptors 
calculated from originals selected at random and then 
transformed. One hundred images were selected, of which, 20 
were rotated, 20 were resized, 20 suffered a gamma 
correction, 20 were sheared and 20 suffered a dithering 
(halftoning) — summing up to 166 315 query descriptors. 

The ground truth is the set of the correct nearest neighbors 
for all query descriptors, according to the Euclidean distance. 

It was computed using the sequential search, a slow method, 
but which guarantees exact results. 

Performance is measured in two axes: effectiveness (the 
capability of the method to return the correct results) and 
efficiency (the capability of the method to use as little 
resources as possible). 

To measure the effectiveness we use a classic metric: the 
precision (which measures the fraction of relevant answers 
found). From the point of view of the user, the most critical 
efficiency metric is the wall time spent on the search, but 
using it to compare the methods is misleading, since it 
depends heavily on the machine, the operating system, the 
current load (concurrent tasks) at the time the experiment is 
performed and even on the degree of fine-tuning spent on 
implementation. We have chosen, therefore, to compare the 
methods by counting, for each method, how many database 
descriptors were accessed per query descriptor. 

Since we are mainly interested in large-scale (thus, disk-
based) contexts, a critical metric is the number of random 
accesses needed to perform the query. Since this operation 
involves the physical relocation of the I/O heads of the disk, it 
incurs in severe performance penalties and must be kept at 
very small values. 

B. Evaluated Methods 
We have implemented and tested four methods. We have 

compared multicurves (explained in Section III) with the state-
of-the-art of methods based on space-filling curves by Liao et 
al. [7] and by Mainar-Ruiz and Pérez-Cortés [16] (both 
methods are explained on Section II.C). All methods were 
implemented in Java, using the Java Platform, Standard 
Edition v. 1.6. 

For the sake of completeness, we have also compared our 
method with the improved version of LSH (Locality Sensitive 
Hashing) of Datar et al. [8]. This version of LSH is also based 
on the use of multiple subindexes, implemented as hash tables. 
Each subindex takes into account just a subset of the 
dimensions of the data, by a clever use of a series of “locality 
sensitive” hash functions based on the projection of the data 
onto straight lines. The method is complex, and the user is 
referred to the cited article for additional details. 

We have used E2LSH version 0.1, the publicly available 
implementation by Andoni, written in C [20]. Unfortunately, 
this LSH implementation is based on main memory, and 
rewriting it to disk would demand a very laborious adaptation. 
We have opted instead to keep it on memory and to measure 
the number of points accessed, and the number of different 
tables accessed per query (corresponding to the number of 
random accesses). All other methods performed on disk. 

C. Parameterization 
An important parameter for all methods is the number of 

subindexes (the number of curves for multicurves and the 
method of Liao et al., the number of hash tables for LSH). The 
equivalent notion in the method of Mainar-Ruiz et al. (which 
uses a single curve) is the number of representative instances 
each database descriptor will have in the index. This decision 



 

has an impact on the time spent building the index and on the 
space it occupies, but chiefly, it influences the number of 
descriptors accessed and the number of random accesses. 

 
Fig. 6. The compromise between the number of hash tables (L) and the 
size of the hash key (K, grows from right to left for each data series, from 
18 to 25). Experiments performed on the Small database.  

TABLE I 
IMPACT OF NUMBER OF CURVES ON PERFORMANCE FOR MULTICURVES 

# of Curves Points Visited 
(Efficiency) 

Precision 
(Effectiveness) 

2 1024 0.39 
4 2048 0.50 
8 4096 0.52 

16 8192 0.51 
Experiments on the Small Database with Probe Depth = 512. 
 

TABLE II 
IMPACT OF PROBE DEPTH ON PERFORMANCE FOR MULTICURVES 

Probe Depth 
(Per Curve) 

Points Visited 
(Efficiency) 

Precision 
(Effectiveness) 

512 4096 0.52 
1024 8192 0.58 
2048 16384 0.65 

Experiments on the Small Database with 8 curves. 

The other essential parameter, for the space-filling methods 
is the probe depth, i.e., how far to explore each one of the 
subindexes. The compromise here is that the more we explore 
the subindexes, the more we improve the precision, but at the 
expense of effectiveness. For LSH, there is not a number of 
elements to explore a priori; the number of elements visited is 
a consequence of two parameters — the selectiveness of the 
index, and the radius of analysis (a radius that indicates that all 
potential matches beyond that distance may be safely 
discarded). 

A parameter which affects the evaluation as a whole, is the 
number of neighbors sought (the k in kNN), since the first 
neighbors (i.e., the nearest) are easier to find. For the Small 
database, in which each query image had potentially several 
matches in the database, we have set k = 20, a margin large 

enough to fetch the descriptors which will have the most 
matches. For the Large database, in which each query image 
had only one match in the database, we have only evaluated 
the ability of the method to recover the first neighbor. 

We have performed our parameterization tests of LSH, on 
the Small database and covered a large spectrum of its 
parameters. Three parameters must be set on the version of the 
LSH we have tested. The number of hash tables, the size of 
the key used for hashing (which is related to the selectivity — 
the larger the key, the more selective the hash functions), and 
the radius of analysis (which can be interpreted as a distance 
from the query beyond which LSH is allowed to ignore any 
candidate solution). 

The effectiveness × efficiency plot in Fig. 6 shows what 
happens when we set the radius of analysis (R) and vary the 
size of the key (K) and the number of hash tables (L). The two 
latter parameters have inverse effects on the selectivity of 
LSH: a larger key tends to make each individual hash table 
very stringent, which can be compensated by introducing more 
tables. The sweet spot of this compromise is where one 
obtains the highest precision without visiting a lot of elements 
(towards the upper-left corner of the graph). 

As the plot clearly shows, if one wants to obtain an 
improvement in precision, the growth in the number of 
elements visited is much steeper if K diminishes than if L 
grows, and this is the main reason the parameterization of 
LSH for main memory tends to use very large values of L, in 
order to keep K also large. Since this implies a prohibitive 
number of random accesses, parameterizations intended for 
disk tend to choose smaller values for both parameters. 

The radius of analysis has also an impact on the performance 
of LSH, but though still sizable, it is not as dramatic. A small 
radius improves the selectivity of the index, granting a better 
efficiency, but with the risk of ignoring potential solutions if 
they lie beyond the radius. We have tested a range of different 
radiuses, obtaining the best performance at R = 290. 

For the comparison with the other methods we retained the 
series with R = 290 and K = 22. 

Compared to LSH, the parameterization of multicurves is 
more straightforward. Just two parameters have to be set: the 
number of curves, at construction time, and the probe depth 
(number of elements examined in each curve), at search time. 

Table I shows the plot of effectiveness × efficiency as the 
number of curves grows. Effectiveness reaches a maximum at 
8 curves, where the compromise between the number of 
subindexes and the representativeness of each subindex is the 
best. For efficiency reasons, we have to keep the number of 
subindexes fairly low (10 being an upper limit in practice), 
because not only the number of points visited is directly 
proportional to the number of subindexes, but also (and most 
important) each subindex implies a random access.  

The probe depth also has a considerable effect on the 
effectiveness, since the further we travel in a subindex, the 
better the chances we compensate for the lesser, local, 
boundary effects of the space-filling mapping (Table II ). 



 

D. Method Comparison 
We start by comparing the performance of all methods 

(multicurves, LSH, Mainar-Ruiz et al. and Liao et al.) as the 
number of subindexes changes (for Mainar-Ruiz, which 
always uses a single subindex, we varied the number of 
representative instances assigned to each data point). This 
comparison is shown in Fig. 7. 

The superiority of multicurves and LSH over the other 
methods is immediately apparent, as they reach a considerably 
better compromise between efficiency and effectiveness. The 
“sweet spot” for both methods is in the region around 1000–
2000 points visited and precision of 0.4–0.5. 

Nevertheless the advantage of multicurves only becomes 
unambiguous when one takes into consideration the number of 
random accesses performed. In fact, for the parameterization 
in the “sweet spot” mentioned, multicurves performs half the 
number of those expensive operations (indicated in the small 
numbers next to the data points). 

To see how the methods behave in a larger scale context, 
we performed a comparison in the Large Database, including 
multicurves, Mainar-Ruiz et al. and Liao et al. (as we have 
explained in Section IV.B, the available LSH implementation 
is RAM-based, and thus, cannot deal with a database so large). 

This time, we have kept the number of subindexes 
(representative instances, for Mainar-Ruiz et al.) fixed at 8, 
and varied the probe depth. The results (Fig. 8) confirm the 
superiority of multicurves among the space-filling curve based 
methods. 

V. NEAR-DUPLICATES IN PERSONAL IMAGE COLLECTIONS 
Several applications have been recently proposed to deal 

with consumers image collections, including 
autosummarizations and collages [1], organization of photo 
albums [2][3], identification of locations and point of view of 
photos [3]. We have chosen the problem of near-duplicate 
image identification [4]. Near-duplicate detection is useful for 
many tasks: retrieving lost metadata, finding intersections 
between sub-collections, removing duplicate removal in 
retrieval results, finding the relative importance of a scene in 
summarizations, saving disk space, etc. It also illustrates well 
the gains provided by the fast matching of high-dimensional 
descriptors. 

A. Image Identification and Copy Detection 
Document identification or copy detection consists in taking 

a query document and finding the original from where it 
derives, together with any relevant metadata, such as titles, 
dates, etc. It is an important operation both to institutions and 
to individual users possessing large documental collections. 

The task is challenging for visual documents, since we are 
interested in recovering more than exact pixel-by-pixel copies: 
even if the document has been subjected to a series of 
deformations, we still want to identify them. The set of 
transformations varies from application to application but 
usually includes translations, rotations, scale changes, 
photometric and colorimetric transformations, cropping and 

occlusions, noise of several kinds, and any combination of 
those. 

 
Fig. 7. Comparison of all methods in the Small database. Multicurves and 
LSH have the best efficiency × effectiveness compromise, but Multicurves 
performs considerably less random accesses (small numbers). 

 
Fig. 8. Comparison of the space-filling based methods in the Large 
database. Multicurves has the best efficiency × effectiveness compromise. 

Image identification systems are a specialization of content-
based image retrieval (CBIR) systems, proposed to solve the 
problem of copy detection. Like all CBIR systems, they use 
descriptors to establish the similarity between the images. But 
instead of stimulating generalization, exploration and trial-
and-error, typical goals of semantic-oriented CBIR systems, 
they are tuned to emphasize the exactness of image 
identification and to tolerate transformations which 
completely disrupt the appearance of the image (such as 
conversion to grayscale or dithering). 

The images may be described either by one descriptor or a 



 

set of descriptors. When a single descriptor must capture the 
information of the image, we say it is a global descriptor. 
When the descriptors are associated to different features of the 
image (regions, edges or small patches around points of 
interest), they are called local descriptors. 

Systems based on local descriptors adopt a criterion of vote 
count: each query descriptor matches with its most similar 
descriptors stored in the database (using a simple distance, like 
the Euclidean distance). Each matched descriptor gives one 
vote to the image to which it belongs. The number of votes is 
used as a criterion of similarity. 

Local descriptor based systems are unsurprisingly much 
more robust. Because the descriptors are many, if some get 
lost due to occlusions or cropping, enough will remain to 
guarantee good results. Even if some descriptors are matched 
incorrectly, giving votes for the wrong images, only a 
correctly identified image will receive a significant amount of 
votes. Unfortunately, the multiplicity of descriptors brings also 
a performance penalty, since hundreds, even thousands of 
matches must be found in order to identify a single image. 

Systems based on global descriptors have not shown 
enough precision on the task of image identification, except 
for slight transformations. In all comparisons, local-descriptor 
methods have performed better [4][24][25]. 

Local-descriptor image and video identification are 
application scenarios where multicurves shows all its 
advantages. Because of the high number of query descriptors, 
query times must be low. Furthermore, the approximation of 
the results induced by the index is not serious, because the loss 
of a few matches is unlikely to affect the final results. Finally, 
the large size of the databases demands a scalable, disk-
friendly and easy to update indexing technique. 

B. Evaluation 
We have tested multicurves in an image identification 

context, for the Large Database, containing over 10 thousand 
images. The system architecture follows a classic scheme: we 
compute the descriptors for every image in the database, and 
then store and index those descriptors. When a query image is 
presented, its descriptors are computed and matched to the 10 
nearest descriptors in the database. To get rid of false positives 
and improve the solution, we apply a geometric consistency 
step (using a robust model fitting technique [26]), discard all 
inconsistent matches and then count the votes. The images are 
ranked by number of votes and presented to the user. The 
descriptor used is SIFT [19], which has a dimensionality of 
128.  

One hundred images were selected and suffered intense 
transformations, which included rotation, size reduction, 
gamma correction, shearing and dithering. The task consisted 
in using those images as queries to locate their originals. 

First, we have run the system using the exact sequential 
search to match the descriptors. Since our query images have a 
large number of descriptors, it is unsurprising that we obtain 
perfect results (the original is always found), since at least a 
few dozens of descriptors (and typically, much more) are 
guaranteed to be correctly matched between query and target. 

Then, we have run the system using multicurves with 8 
subindexes and examining 512 descriptors per subindex to 
match the descriptors. Each correctly identified image has lost, 
on average, about 20% of its votes, but those were so many to 
begin with, that this did not result in changes in the final 
ranking, which was still perfect. Running time, however, was 
between 20 and 25 times shorter. 

These results are a testimony of both the robustness of the 
local-descriptor architecture, and the potential efficiency gains 
provided by multicurves in those architectures. 

VI. CONCLUSION 
When the database is small enough to fit in main memory, it 

is reasonable to assume that random access is cheap. In that 
context, the time spent on descriptor matching is often 
dominated by the computation of distance functions. The 
breakthrough of methods like LSH is the ability to 
dramatically reduce the number of elements examined (and 
thus, distances computed), saving much CPU time. They 
introduce, however, the cost of performing a large number of 
random accesses, making their adaptation to disks very 
challenging. 

In a secondary memory context, it is critical to reduce those 
accesses, since they involve the physical relocation of the hard 
disk I/O head, an operation which takes the time equivalent to 
millions of CPU cycles. In this context, the advantage of 
multicurves becomes clear, since it provides good precision 
with a small number of subindexes, and thus, avoids making 
many random accesses. 

Multicurves possesses all desiderata to thrive in a large 
scale database context: besides being disk-friendly, it is simple 
to implement and easily accepts updates (due to the fact it is 
backed by simple sorted lists), and it has a good compromise 
between precision and speed. 

As future work, we would like to explore alternative ways 
to distribute the dimensions among the subindexes (other than 
a simple partitioning) and to provide a theoretical model of the 
approximation bounds of multicurves. 
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