

Indexing Personal Image Collections: A Flexible,
Scalable Solution

Eduardo Valle, Matthieu Cord, Sylvie Philipp-Foliguet, and David Gorisse

Abstract — The growth of personal image collections has

boosted the creation of many applications, many of which
depend on the existence of fast schemes to match similar
image descriptors. In this paper we present multicurves, a new
indexing method for multimedia descriptors, able to handle
high dimensionalities (100 dimensions and over) and large
databases (millions of descriptors). The technique allows a
fast implementation of approximate kNN search, and deals
easily with data updating (insertions and deletions). The index
is based on the simultaneous use of several moderate-
dimensional space-filling curves. The combined effect of
having more than one curve, and reducing the dimensionality
of each individual curve allows overcoming undesirable
boundary effects. In empirical evaluations, the method
compares favorably with state-of-the-art methods, especially
when the constraints of secondary storage are considered.1.

Index Terms — Descriptor indexing, High-dimensional, Image
collections, Consumer images, Near-duplicate detection.

I. INTRODUCTION
Personal multimedia devices like digital cameras and

multimedia-enabled cell-phones have allowed consumers to
gather large personal image collections, sometimes reaching
tens of thousands of items. Many tools have been created to
deal with those collections, providing services like online
sharing, photo collage creation, album organization, image
identification, etc. [1]–[4]. Those applications often face the
challenge of automatically matching and classifying large
amounts of visual data. Descriptors are used to summarize
data content. The descriptors are a more compact and —
hopefully — semantically richer representation than the raw
image pixels. They are usually high-dimensional and may
appear at the rate of hundreds per document.

A basic operation needed by those applications is the fast
matching of similar descriptors. That can be provided by
indexing schemes, but descriptor indexing is challenging from
both the theoretical and the technical points-of-view, since the
well-known “curse of dimensionality” makes it inherently
inefficient. Furthermore, the memory hierarchy brings
additional constraints to the implementation.

Many high-dimensional indexing methods have been

1 E. Valle was supported by a CAPES/COFECUB, and a FAPESP Grant.
E. Valle is with Computing Institute, UNICAMP, São Paulo, Brazil. (e-

mail: mail@eduardovalle.com).
S. Philipp-Foliguet and D. Gorisse are with Équipes Traitement de

l’Information et Systèmes, 95014 Cergy-Pontoise France. (e-mails:
sylvie.philipp@ensea.fr, david.gorisse@ensea.fr).

M. Cord is with the LIP6 lab., UPMC — Paris VI, France (e-mail:
matthieu.cord@lip6.fr).

proposed [5], but few are able to address the practical
concerns of very large, very high-dimensional descriptor
databases. To be successful, two basic ideas are usually
considered: on one hand, querying simultaneously multiple
subindexes; on the other hand, reducing drastically the
dimensionality of each subindex [6]–[8].

In this paper we propose multicurves, an index able to
handle high-dimensional image descriptors. Multicurves is
based on space-filling curves — a technique which has
attracted substantial attention on the field for its ability to
create a “vicinity-sensitive” total order on the data, thus
allowing the adaptation of the efficient one-dimensional
indexing techniques to multidimensional data. The originality
of multicurves is to integrate those curves into a very effective
structure, where a careful combination of multiple moderate-
dimensional curves leads to a large precision improvement.

The paper is structured as follows: in Section II.A, we
discuss the subject of image descriptor indexing, exploring
some general issues and then reviewing the state of the art in
Section II.B. In Section III we describe multicurves,
introducing the method and detailing the algorithms for
construction and search. In Section IV, we show the empirical
evaluation of multicurves, comparing it to other state-of-the-
art high-dimensional indexing techniques. In Section III.D we
show an interesting application of the method to the task of
image identification, i.e., the matching of an original image
and its (distorted) copies.

II. INDEXING MULTIMEDIA DESCRIPTORS

A. Image Descriptor Databases
The challenge of multimedia retrieval comes, in great part,

from the large semantic gap between how the data are coded
and what they represent. Multimedia retrieval seldom uses the
raw representation of data, and is instead mediated by the use
of descriptors. Descriptors appear in a large variety of forms
(color and texture histograms, invariant moments, Fourier
coefficients, local jets, gradient maps, etc.) but are often of
vector nature, and frequently, high-dimensional.

Besides their elevated dimensionality, multimedia databases
are usually very large and the scenario has worsened by the
use of local descriptors, which (as we discuss in Section III.D)
proliferate at the rate of hundreds per document.

B. Large Scale High-dimensional Indexing
Descriptor matching is usually performed by an operation

called kNN search (or k nearest neighbors search), which
finds, in the database, the descriptors most similar to the query
descriptor. The simplest solution to kNN search is sequential

scan. Unfortunately, this brute-force solution is acceptable
only for the smallest of databases, being unfeasible in most
contexts. The alternative is to use indexing, in order to
accelerate the search. However, the performance of indexing
depends greatly on the dimensionality of the data. Search time
can be made to grow only logarithmically with the size of the
base, but at the expense of introducing a hidden constant,
which grows exponentially with dimensionality [5][9].

This phenomenon is known as “curse of dimensionality”
and expresses the difficulty of partitioning the data or the
space in an efficient way when dimensionality is very high
[10]. Basically, as dimensionality grows, several counter-
intuitive phenomena appear, all of them detrimental to the
working of indexes [9]. As far as we know, for over a dozen
dimensions, no method can reliably perform exact matching
faster than a simple sequential search. This poses a challenge,
since descriptors with hundreds of dimensions are usual.

To solve this dilemma, the methods may trade-off exactness
for speed. This means that they will find the matching
descriptor with good probability, but not for sure. In order to
be of practical interest in the context of large-scale
multimedia, the scheme must:

• perform well for high-dimensional data, presenting a
good trade-off between exactness and speed;

• adapt well to secondary memory, which in practice
means that few random accesses must be performed;

• be dynamic, i.e., allow easy data insertion/ deletion,
without significant performance degradation.

Despite the abundant literature on multidimensional
indexing (for an in-depth account of the bibliography see [5]),
surprisingly few methods are able to accomplish those
requirements: many assume implementation in main memory
(and thus, cheap random access throughout the index), other
have prohibitive building times, and so on.

A class of methods which does achieve those goals tries to
transform the n-dimensional indexing problem into a one-
dimensional indexing problem by using space-filling curves.

C. Indexing using Space-Filling Curves
Space-filling curves are fractals whose topological

dimension is one, but whose Hausdorff dimension is the same
as their embedding dimension. They are thus able to provide a
continuous mappings from the unit interval [0; 1] to any unit
hypercube [0; 1]d. They were introduced by Peano [11] and
Hilbert [12]. Most space-filling curves are constructed by a
recursive procedure, in which the space is progressively
divided into smaller cells, which are then traversed by the
curve. In the limit, the curve fills the entire space (Fig. 1).

Though the study of those curves and of their surprising
properties is fascinating in itself, what concerns us here is their
ability of inducing a “vicinity-sensitive” total order to the data.
What we mean by that is that the curve gives the
multidimensional data a total order which, locally and with
high-probability, preserves the neighborhood relations of the
space (putting near in the curve data which are near in the
space).

The use of space-filling curves to perform kNN search is

not new. Apparently Faloutsos [13] was the first to explicitly
refer to the concept of curves, though earlier authors already
used the idea of bit shuffling, bit interlacing or bit
interleaving. There is a space-filling curve concept “hidden”
in bit shuffling techniques, because interleaving the bits of the
individual spatial coordinates induces the appearance of a
fractal curve known as “Z-order curve”. Faloutsos and
Roseman were the first to suggest that other curves could
perform better than the Z-order, first proposing the Gray-code
curve and then the Hilbert curve [14].

 1st order 2nd order 3rd order

a)

Fig. 1. The recursive space-filling Hilbert curve. Three iterations are
shown: the actual space-filling curve is the infinite limit of those
iterations. The curve allows mapping an n-dimensional space onto a 1-
dimensional line in a way which, locally, preserves the neighborhood
relations.

All those pioneering methods were conceptually very
simple; they mapped the high-dimensional elements in the
curve and then performed a straightforward similarity search
using the one-dimensional position in the curve.

A good heuristic is to take the nearest elements in the curve
as the nearest elements in the space. The hypothesis is that
points that are near to each other in the curve always
correspond to points that are near to each other in the space.
Unfortunately, the converse is not true, in the sense that near
points in the space are not always near in the curve. This is
because of boundary effects, which tend to put very far apart
points in certain regions of the curve. The matter is seriously
aggravated as the dimensionality increases (Fig. 2).

Fig. 2. The problem with boundary effects on the space-filling curves. The
points in the centre of the space are further apart in the curve than the
points in the lower-left quadrant. On those circumstances, the
“neighborhood-preserving” property of the mapping is violated.

In order to conquer the boundary effects, Megiddo and
Shaft suggest the use of several curves at once, hoping that,
for any given query, at least one of them will not pose
boundary problems. They present the idea in a very general
way, without describing which curves should be used and how
they should be made different [15]. Shepherd et al. develop on
this idea, by specifically recommending the use of several

identical Hilbert curves where different copies of the data
elements are mapped, after random transformations (rotations
and translations) [6]. Whether or not the set of transformations
could be optimized is left unanswered.

Finally, Liao et al. solve the problem of choosing the
transformations, by devising the necessary number of curves
and the optimal set of translations to obtain a bounded
approximation error in the kNN search [7].

A departure from those methods was suggested recently by
Mainar-Ruiz and Pérez-Cortés [16]. Instead of using multiple
curves, they propose using multiple instances of the same
element in only one curve. Before inserting those instances in
the curve, the algorithm disturbs their position, to give them
the opportunity of falling into different regions of the curve. In
that way even if the query falls into a problematic region,
chances are it will be reasonably near to at least one of the
instances. This has two advantages: first, a single sorted list
structure has to be managed; second, at search time, a single
random access is performed. The main drawback is the
difficulty in controlling the optimal number of instances per
element: the method ignores that some regions in the curve are
much more problematic than others, and simply associates
each element to the same number of instances.

III. THE MULTICURVES INDEX

A. Introduction
As we have seen in Section II.C, the greatest problem of the

use of space-filling curves comes from boundary effects
brought by the existence of “zones of discontinuity” in the
curves, where the quasi-order-preserving qualities of the
mapping are broken. Different methods propose different
solutions, usually through the simultaneous use of multiple
curves.

Multicurves is also based on the use of multiple curves, but
with the important improvement that each curve is only
responsible for a subset of the dimensions.

The dimensionality-reduction makes for an efficient
implementation of the subindex, reducing the effects of the
“curse of dimensionality”. Because of the exponential nature
of the “curse” it is more efficient to process several low or
moderate-dimensional indexes than a single high-dimensional
one. This is explained by the fact that not only we gain the
intrinsic advantages of using multiple curves (i.e., elements
that are incorrectly separated in one curve will probably stay
together in another), but also, we lower the boundary effects
inside each one of the curves.

Multicurves index creation is simple: one subindex (a sorted
list data structure) is created for each subspace of the data. The
data points are inserted in all subindexes. For each subindex,
first the data point is projected onto the associated subspace;
then the projection is mapped onto a one-dimensional
extended-key using the space-filling curve; finally a pair
<extended-key, data> is inserted into the list, which is sorted
by extended-key.

Search is done the same way: the query is decomposed into
several projections (corresponding to the dimensions

associated to each subindex) and each projection has its
extended-key computed. Then, for each subindex, we explore
the elements whose extended-keys are the nearest to the
corresponding query extended-key (Fig. 5).

This scheme presents several advantages:
• the sorted list is the mainly used data structure, and it can

be handled efficiently (by a B-tree, for example),
resulting in a disk friendly method;

• for the same reason, insertions and deletions can be
handled easily;

• the offline pre-processing for index construction is
reasonable, consisting mainly of sorting operations;

• almost all accesses to the data in the sorted lists are
sequential, resulting in savings in disk operations, where
random access is expensive.

Before detailing the algorithms, a few definitions (Fig. 3):
• d: the dimensionality of the data elements;
• c: the number of curves to be used in the index;
• d[i]: the dimensionality of the ith curve with Σ d[i] = d;
• A: an association between the dimensions of the data and

dimensions of the curves, such that the value on A[i][j]
indicates which data dimension corresponds to the jth
dimension of the ith curve. E.g., if A[2][3] = 10, it means
that the 3rd dimension of the 2nd curve is in fact the 10th
dimension of the data space (Fig. 3);

• m: the number of bits needed to represent each dimension
of the data elements, which will correspond to the order
of the curve to be generated;

Fig. 3. A sample parameterization of the multicurves showing how the
parameters c, d[i], and the association A determine the dimensions
considered by each subindex.

B. Building the Index
The construction algorithm for multicurves (shown in

Fig. 4) is relatively simple, since the underlying structure of
the index is just a set of sorted lists, one for each curve.

Each data element is decomposed into c projections,
accordingly to the association of dimensions A. Those
projections are used to compute the extended-key in each
curve. The pairs <extended-key, element> are inserted in the
curves.

The complexity of the construction depends on the
underlying structure used to implement the sorted lists. The
computation of the projections of each element in steps 7–9
takes, at worst, O(d) operations. The computation of the
extended-key on line 10 takes O(md) bit operations (see
Section III.D). Assuming an efficient sorted list structure,
insertions will take O(log n) steps, where n is the number of

elements in the database. Since we are building c lists, the
algorithm should take at worst, O(c (nmd + n log n)) steps.

C. Searching
The search algorithm is also simple (Fig. 5). We choose,

beforehand, the number of elements to examine in each
subindex (which is called probe depth). Then we project the
query onto the same c subspaces used to build the index. We
find, on each subindex, the elements nearest to the
corresponding projection, and keep the k nearest to the query.
The complexity analysis of the search comparison is easy: the
construction of the extended-key takes O(md) bit operations
(see Section III.D). The time spent looking for the values the
nearest to the extended-key depends on the underlying data
structure, but generally it can be assumed to take at most
O(log n) steps, where n is the number of elements in the
database. This step is prone to be expensive, for here we are
forced to make at least one random access to the data. The
complexity of steps 9–15 is known beforehand and grows
linearly with the number of elements to be examined. The
expensive operation here is the computation of the distances,
which takes O(d) arithmetic operations, for the p-norm
distances (like the Euclidean distance).

The dimensionality has also a “hidden” influence, in that it
increases linearly the amount of data which must be
transferred by the algorithm. This is non-negligible when we
use secondary storage.

The whole operation (steps 2–16) is repeated once for every
subindex, which means a linear growth with this parameter.

The symbols are explained in Section II.A
points is the list of data elements
point[i] is the value of the ith dimension of point
A[][] is an association between the dimensions of the data space and the

subindexes space as explained in Fig.3 .
 curves[] is an array of c sorted lists
projection[] is the projection of point[] onto the subspace of the curve
GetExtendedKey() is a function which gives the extended-key in the space-

filling curve from the coordinates in the space

BuildMulticurves(c, d[], A[][], m, points)
 → Returns array of sorted lists
1. For curve ← 1 to c do
2. curves[curve] ←
 new empty sorted list of pairs <extended_key, point>
 sorted by extended_key
3. Next
4. For each point in points do
5. For curve ← 1 to c do
6. projection[] ← new array with d[curve] elements
7. For dimension ← 1 to d[curve] do
8. projection[dimension] ←
 point[A[curve][dimension]]
9. Next
10. extended_key ←
 GetExtendedKey(projection)
11. Put the pair <extended_key, point> into
 the list curves[curve]
12. Next
13. Next
14. Return curves[]
Fig. 4. The construction algorithm for multicurves. The algorithm
decomposes each database point in a set of projections. Each projection is
inserted into a sorted list, accordingly to its extended key on a space
filling curve.

The symbols are explained in Section II.A and Fig. 4
probe_depth is the number of data items to examine in each curve
query[i] is the value of the ith dimension of query

SearchMulticurves (c, d[], A[][], m, curves[], probe_depth, k, query)
 → Returns a list of k nearest neighbors

1. best ← new empty sorted list of pairs <distance, point>
 sorted by distance
2. For curve ← 1 to c do
3. projection[] ←new array with d[curve] elements
4. For dimension ← 1 to d[curve] do
5. projection[dimension] ← query[A[curve][dimension]]
6. Next
7. extended_key ←
 GetExtendedKey(projection)
8. candidates ←
 list with the probe_depth points the nearest to extended_key in
 the sorted list curves[curve]
9. For each candidate in candidates do
10. distance ← distance from candidate to query
11. If distance < last distance in best then
12. Put pair <distance, candidate> in best
13. If best has more than k entries then
14. Remove last entry in best
15. Next
16. Next
17 Return best
Fig. 5. The search algorithm for multicurves. The query point is
decomposed into a set of projections. Each projection is used to gather a
number of candidates on the sorted list corresponding to the space filling
curve associated to that subspace. At the end, the best candidates are
returned.

In summary, the time spent on the search grows linearly with
the number of elements to be examined in each index, the
number of subindexes and the number of dimensions of the
data space. It also grows logarithmically with the number of
elements in the database.

D. Discussion
The dimensionality reduction in each subindex is crucial for

the performance of multicurves. Not only it serves the
pragmatic purpose of making the index implementation more
efficient, but it also allows for better comparison of data in
high-dimensional spaces. On those spaces, it is
counterproductive to take all dimensions into account all the
time because at every local cluster, some dimensions act as
outliers. In a nutshell this means that we cannot assume that
all dimensions “make sense” throughout the space. This
somewhat surprising property of high dimensional data had
already been observed in the field of data mining [17]. By
putting different dimensions on each subindex, multicurves
introduces the possibility of ignoring outlier dimensions.

Any recursive space-filling curve could theoretically be
used, but in our implementation we have used the Hilbert
curve, which in comparison with other space-filling curves,
like the Z-order curve or the Gray-code curve, has better
clustering properties, mostly because of the absence of distant
jumps. Compared to those curves, however, the mapping
between the hyperdimensional coordinates and the extended-
key is much more complex. Fortunately, there is an efficient
algorithm which uses little memory and can map any curve
using only O(md) bit operations [18].

It is not necessary to compute the arbitrary-precision
version of the curve. If the data coordinates are quantized in m
bits, a recursive approximation of order m is enough to
guarantee no loss of precision.

Any adequate data structure can be used to store the sorted
lists, the choice being based on practical considerations.
Normally some flavor of B-tree should be the best solution for
most database applications. In our test implementations, for
the sake of simplicity, we have chosen a two-level indexing,
with the first level fitting entirely in main memory.

Once the index is built, updating consists simply in
inserting and removing data from the lists. The ability to do it
without degrading the index performance depends, of course,
on the underlying data structure used to implement the lists,
but, if B-trees are used, the index will be completely dynamic.

IV. EMPIRICAL EVALUATION
In this section, we present the empirical performance

evaluation of multicurves, including the comparison with
other state-of-art methods.

A. Experimental Setup
A standardized experimental setup, accepted by the

community, is still lacking for the evaluation of high-
dimensional indexing. Therefore, one of the main challenges
researchers on the subject face is the choice of their databases,
queries, ground truth and metrics.

Though early works tended to use synthetic data, following
a uniform random distribution, it is now generally accepted
that this is unrealistic and leads to overpessimistic results.
Therefore, recent works are usually evaluated on real data.

We have chosen to use databases of SIFT descriptors [19],
which serve well to our evaluation purposes: they are high-
dimensional (128 dimensions in their standard version), can be
embedded in a Euclidean space, and, due to their
effectiveness, are very well established, having been used
extensively in both research and industrial applications.

We have created two databases. The Small Database is
composed by the SIFT descriptors generated from image
transformations of a selection of 100 original images. Each
image suffered three rotations, four scale changes, four non-
linear photometric changes (gamma corrections), two
smoothings and two shearings — a total of 15 transformations.
Each transformed image had its SIFT descriptors calculated
and aggregated into a database of 2 871 300 descriptors. The
queries are the SIFT descriptors calculated from the original
images, amounting to 263 968 descriptors.

The Large Database is composed by SIFT descriptors
generated from about 10 000 original images and amounts to
21 591 483 descriptors. The queries are the SIFT descriptors
calculated from originals selected at random and then
transformed. One hundred images were selected, of which, 20
were rotated, 20 were resized, 20 suffered a gamma
correction, 20 were sheared and 20 suffered a dithering
(halftoning) — summing up to 166 315 query descriptors.

The ground truth is the set of the correct nearest neighbors
for all query descriptors, according to the Euclidean distance.

It was computed using the sequential search, a slow method,
but which guarantees exact results.

Performance is measured in two axes: effectiveness (the
capability of the method to return the correct results) and
efficiency (the capability of the method to use as little
resources as possible).

To measure the effectiveness we use a classic metric: the
precision (which measures the fraction of relevant answers
found). From the point of view of the user, the most critical
efficiency metric is the wall time spent on the search, but
using it to compare the methods is misleading, since it
depends heavily on the machine, the operating system, the
current load (concurrent tasks) at the time the experiment is
performed and even on the degree of fine-tuning spent on
implementation. We have chosen, therefore, to compare the
methods by counting, for each method, how many database
descriptors were accessed per query descriptor.

Since we are mainly interested in large-scale (thus, disk-
based) contexts, a critical metric is the number of random
accesses needed to perform the query. Since this operation
involves the physical relocation of the I/O heads of the disk, it
incurs in severe performance penalties and must be kept at
very small values.

B. Evaluated Methods
We have implemented and tested four methods. We have

compared multicurves (explained in Section III) with the state-
of-the-art of methods based on space-filling curves by Liao et
al. [7] and by Mainar-Ruiz and Pérez-Cortés [16] (both
methods are explained on Section II.C). All methods were
implemented in Java, using the Java Platform, Standard
Edition v. 1.6.

For the sake of completeness, we have also compared our
method with the improved version of LSH (Locality Sensitive
Hashing) of Datar et al. [8]. This version of LSH is also based
on the use of multiple subindexes, implemented as hash tables.
Each subindex takes into account just a subset of the
dimensions of the data, by a clever use of a series of “locality
sensitive” hash functions based on the projection of the data
onto straight lines. The method is complex, and the user is
referred to the cited article for additional details.

We have used E2LSH version 0.1, the publicly available
implementation by Andoni, written in C [20]. Unfortunately,
this LSH implementation is based on main memory, and
rewriting it to disk would demand a very laborious adaptation.
We have opted instead to keep it on memory and to measure
the number of points accessed, and the number of different
tables accessed per query (corresponding to the number of
random accesses). All other methods performed on disk.

C. Parameterization
An important parameter for all methods is the number of

subindexes (the number of curves for multicurves and the
method of Liao et al., the number of hash tables for LSH). The
equivalent notion in the method of Mainar-Ruiz et al. (which
uses a single curve) is the number of representative instances
each database descriptor will have in the index. This decision

has an impact on the time spent building the index and on the
space it occupies, but chiefly, it influences the number of
descriptors accessed and the number of random accesses.

Fig. 6. The compromise between the number of hash tables (L) and the
size of the hash key (K, grows from right to left for each data series, from
18 to 25). Experiments performed on the Small database.

TABLE I
IMPACT OF NUMBER OF CURVES ON PERFORMANCE FOR MULTICURVES

of Curves Points Visited
(Efficiency)

Precision
(Effectiveness)

2 1024 0.39
4 2048 0.50
8 4096 0.52

16 8192 0.51
Experiments on the Small Database with Probe Depth = 512.

TABLE II
IMPACT OF PROBE DEPTH ON PERFORMANCE FOR MULTICURVES

Probe Depth
(Per Curve)

Points Visited
(Efficiency)

Precision
(Effectiveness)

512 4096 0.52
1024 8192 0.58
2048 16384 0.65

Experiments on the Small Database with 8 curves.

The other essential parameter, for the space-filling methods
is the probe depth, i.e., how far to explore each one of the
subindexes. The compromise here is that the more we explore
the subindexes, the more we improve the precision, but at the
expense of effectiveness. For LSH, there is not a number of
elements to explore a priori; the number of elements visited is
a consequence of two parameters — the selectiveness of the
index, and the radius of analysis (a radius that indicates that all
potential matches beyond that distance may be safely
discarded).

A parameter which affects the evaluation as a whole, is the
number of neighbors sought (the k in kNN), since the first
neighbors (i.e., the nearest) are easier to find. For the Small
database, in which each query image had potentially several
matches in the database, we have set k = 20, a margin large

enough to fetch the descriptors which will have the most
matches. For the Large database, in which each query image
had only one match in the database, we have only evaluated
the ability of the method to recover the first neighbor.

We have performed our parameterization tests of LSH, on
the Small database and covered a large spectrum of its
parameters. Three parameters must be set on the version of the
LSH we have tested. The number of hash tables, the size of
the key used for hashing (which is related to the selectivity —
the larger the key, the more selective the hash functions), and
the radius of analysis (which can be interpreted as a distance
from the query beyond which LSH is allowed to ignore any
candidate solution).

The effectiveness × efficiency plot in Fig. 6 shows what
happens when we set the radius of analysis (R) and vary the
size of the key (K) and the number of hash tables (L). The two
latter parameters have inverse effects on the selectivity of
LSH: a larger key tends to make each individual hash table
very stringent, which can be compensated by introducing more
tables. The sweet spot of this compromise is where one
obtains the highest precision without visiting a lot of elements
(towards the upper-left corner of the graph).

As the plot clearly shows, if one wants to obtain an
improvement in precision, the growth in the number of
elements visited is much steeper if K diminishes than if L
grows, and this is the main reason the parameterization of
LSH for main memory tends to use very large values of L, in
order to keep K also large. Since this implies a prohibitive
number of random accesses, parameterizations intended for
disk tend to choose smaller values for both parameters.

The radius of analysis has also an impact on the performance
of LSH, but though still sizable, it is not as dramatic. A small
radius improves the selectivity of the index, granting a better
efficiency, but with the risk of ignoring potential solutions if
they lie beyond the radius. We have tested a range of different
radiuses, obtaining the best performance at R = 290.

For the comparison with the other methods we retained the
series with R = 290 and K = 22.

Compared to LSH, the parameterization of multicurves is
more straightforward. Just two parameters have to be set: the
number of curves, at construction time, and the probe depth
(number of elements examined in each curve), at search time.

Table I shows the plot of effectiveness × efficiency as the
number of curves grows. Effectiveness reaches a maximum at
8 curves, where the compromise between the number of
subindexes and the representativeness of each subindex is the
best. For efficiency reasons, we have to keep the number of
subindexes fairly low (10 being an upper limit in practice),
because not only the number of points visited is directly
proportional to the number of subindexes, but also (and most
important) each subindex implies a random access.

The probe depth also has a considerable effect on the
effectiveness, since the further we travel in a subindex, the
better the chances we compensate for the lesser, local,
boundary effects of the space-filling mapping (Table II).

D. Method Comparison
We start by comparing the performance of all methods

(multicurves, LSH, Mainar-Ruiz et al. and Liao et al.) as the
number of subindexes changes (for Mainar-Ruiz, which
always uses a single subindex, we varied the number of
representative instances assigned to each data point). This
comparison is shown in Fig. 7.

The superiority of multicurves and LSH over the other
methods is immediately apparent, as they reach a considerably
better compromise between efficiency and effectiveness. The
“sweet spot” for both methods is in the region around 1000–
2000 points visited and precision of 0.4–0.5.

Nevertheless the advantage of multicurves only becomes
unambiguous when one takes into consideration the number of
random accesses performed. In fact, for the parameterization
in the “sweet spot” mentioned, multicurves performs half the
number of those expensive operations (indicated in the small
numbers next to the data points).

To see how the methods behave in a larger scale context,
we performed a comparison in the Large Database, including
multicurves, Mainar-Ruiz et al. and Liao et al. (as we have
explained in Section IV.B, the available LSH implementation
is RAM-based, and thus, cannot deal with a database so large).

This time, we have kept the number of subindexes
(representative instances, for Mainar-Ruiz et al.) fixed at 8,
and varied the probe depth. The results (Fig. 8) confirm the
superiority of multicurves among the space-filling curve based
methods.

V. NEAR-DUPLICATES IN PERSONAL IMAGE COLLECTIONS
Several applications have been recently proposed to deal

with consumers image collections, including
autosummarizations and collages [1], organization of photo
albums [2][3], identification of locations and point of view of
photos [3]. We have chosen the problem of near-duplicate
image identification [4]. Near-duplicate detection is useful for
many tasks: retrieving lost metadata, finding intersections
between sub-collections, removing duplicate removal in
retrieval results, finding the relative importance of a scene in
summarizations, saving disk space, etc. It also illustrates well
the gains provided by the fast matching of high-dimensional
descriptors.

A. Image Identification and Copy Detection
Document identification or copy detection consists in taking

a query document and finding the original from where it
derives, together with any relevant metadata, such as titles,
dates, etc. It is an important operation both to institutions and
to individual users possessing large documental collections.

The task is challenging for visual documents, since we are
interested in recovering more than exact pixel-by-pixel copies:
even if the document has been subjected to a series of
deformations, we still want to identify them. The set of
transformations varies from application to application but
usually includes translations, rotations, scale changes,
photometric and colorimetric transformations, cropping and

occlusions, noise of several kinds, and any combination of
those.

Fig. 7. Comparison of all methods in the Small database. Multicurves and
LSH have the best efficiency × effectiveness compromise, but Multicurves
performs considerably less random accesses (small numbers).

Fig. 8. Comparison of the space-filling based methods in the Large
database. Multicurves has the best efficiency × effectiveness compromise.

Image identification systems are a specialization of content-
based image retrieval (CBIR) systems, proposed to solve the
problem of copy detection. Like all CBIR systems, they use
descriptors to establish the similarity between the images. But
instead of stimulating generalization, exploration and trial-
and-error, typical goals of semantic-oriented CBIR systems,
they are tuned to emphasize the exactness of image
identification and to tolerate transformations which
completely disrupt the appearance of the image (such as
conversion to grayscale or dithering).

The images may be described either by one descriptor or a

set of descriptors. When a single descriptor must capture the
information of the image, we say it is a global descriptor.
When the descriptors are associated to different features of the
image (regions, edges or small patches around points of
interest), they are called local descriptors.

Systems based on local descriptors adopt a criterion of vote
count: each query descriptor matches with its most similar
descriptors stored in the database (using a simple distance, like
the Euclidean distance). Each matched descriptor gives one
vote to the image to which it belongs. The number of votes is
used as a criterion of similarity.

Local descriptor based systems are unsurprisingly much
more robust. Because the descriptors are many, if some get
lost due to occlusions or cropping, enough will remain to
guarantee good results. Even if some descriptors are matched
incorrectly, giving votes for the wrong images, only a
correctly identified image will receive a significant amount of
votes. Unfortunately, the multiplicity of descriptors brings also
a performance penalty, since hundreds, even thousands of
matches must be found in order to identify a single image.

Systems based on global descriptors have not shown
enough precision on the task of image identification, except
for slight transformations. In all comparisons, local-descriptor
methods have performed better [4][24][25].

Local-descriptor image and video identification are
application scenarios where multicurves shows all its
advantages. Because of the high number of query descriptors,
query times must be low. Furthermore, the approximation of
the results induced by the index is not serious, because the loss
of a few matches is unlikely to affect the final results. Finally,
the large size of the databases demands a scalable, disk-
friendly and easy to update indexing technique.

B. Evaluation
We have tested multicurves in an image identification

context, for the Large Database, containing over 10 thousand
images. The system architecture follows a classic scheme: we
compute the descriptors for every image in the database, and
then store and index those descriptors. When a query image is
presented, its descriptors are computed and matched to the 10
nearest descriptors in the database. To get rid of false positives
and improve the solution, we apply a geometric consistency
step (using a robust model fitting technique [26]), discard all
inconsistent matches and then count the votes. The images are
ranked by number of votes and presented to the user. The
descriptor used is SIFT [19], which has a dimensionality of
128.

One hundred images were selected and suffered intense
transformations, which included rotation, size reduction,
gamma correction, shearing and dithering. The task consisted
in using those images as queries to locate their originals.

First, we have run the system using the exact sequential
search to match the descriptors. Since our query images have a
large number of descriptors, it is unsurprising that we obtain
perfect results (the original is always found), since at least a
few dozens of descriptors (and typically, much more) are
guaranteed to be correctly matched between query and target.

Then, we have run the system using multicurves with 8
subindexes and examining 512 descriptors per subindex to
match the descriptors. Each correctly identified image has lost,
on average, about 20% of its votes, but those were so many to
begin with, that this did not result in changes in the final
ranking, which was still perfect. Running time, however, was
between 20 and 25 times shorter.

These results are a testimony of both the robustness of the
local-descriptor architecture, and the potential efficiency gains
provided by multicurves in those architectures.

VI. CONCLUSION
When the database is small enough to fit in main memory, it

is reasonable to assume that random access is cheap. In that
context, the time spent on descriptor matching is often
dominated by the computation of distance functions. The
breakthrough of methods like LSH is the ability to
dramatically reduce the number of elements examined (and
thus, distances computed), saving much CPU time. They
introduce, however, the cost of performing a large number of
random accesses, making their adaptation to disks very
challenging.

In a secondary memory context, it is critical to reduce those
accesses, since they involve the physical relocation of the hard
disk I/O head, an operation which takes the time equivalent to
millions of CPU cycles. In this context, the advantage of
multicurves becomes clear, since it provides good precision
with a small number of subindexes, and thus, avoids making
many random accesses.

Multicurves possesses all desiderata to thrive in a large
scale database context: besides being disk-friendly, it is simple
to implement and easily accepts updates (due to the fact it is
backed by simple sorted lists), and it has a good compromise
between precision and speed.

As future work, we would like to explore alternative ways
to distribute the dimensions among the subindexes (other than
a simple partitioning) and to provide a theoretical model of the
approximation bounds of multicurves.

REFERENCES
[1] C. Rother, L. Bordeaux, Y. Hamadi, A. Blake. “AutoCollage” in Proc.

33rd Int. Conf. and Exhib. on Comp. Graph. and Interactive Techniques
(SIGGRAPH 2006). Boston – MA, USA, 2006.

[2] N. Snavely, S. Seitz, R. Szeliski. “Photo tourism: Exploring photo
collections in 3D” in Proc. 33rd Int. Conf. and Exhib. on Comp. Graph.
and Interactive Techniques (SIGGRAPH 2006). Boston – MA, USA,
2006.

[3] P. Corcoran, G. Costache. “Automated sorting of consumer image
collections using face and peripheral region image classifiers,” IEEE
Trans. on Consumer Electronics, v. 51, n.3, 2005.

[4] Y. Ke, R. Sukthankar, and L. Huston, “An efficient parts-based near-
duplicate and sub-image retrieval system,” Proc. 12th ACM Int. Conf. on
Multimedia, New York, NY, USA, 2004.

[5] H. Samet, Foundations of multidimensional and metric data structures
(The Morgan Kaufmann series in computer graphics). San Francisco,
CA: Morgan Kaufman, 2006.

[6] J. Shepherd, X. Zhu and N. Megiddo, “A fast indexing method for
multidimensional nearest neighbor search,” in SPIE Conf. on Storage
and Retrieval for Image and Video Databases VII. San Jose, CA, 1999.

[7] S. Liao, M. Lopez and S. Leutenegger, “High dimensional similarity
search with space filling curves,” in Proc. IEEE Int. Conf. on Data Eng.
Heidelberg, Germany, 2001.

[8] M. Datar, N. Immorlica, P. Indyk and V. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proc. 12th Annual
Symp. on Computational Geometry. Brooklyn – NY, 2004.

[9] C. Böhm, S. Berchtold and D. Keim, “Searching in high-dimensional
spaces: Index structures for improving the performance of multimedia
databases,” ACM Computing Surveys (CSUR), vol. 33, n. 3, pp. 322–
373, Sept. 2001.

[10] R. Bellman, Adaptive control processes: a guided tour. Princeton, NJ:
Princeton University Press. 1961.

[11] G. Peano, “Sur une courbe, qui remplit toute une aire plane,”
Mathematische Ann., vol. 36, n. 1, pp. 157-160, 1890.

[12] D. Hilbert, “Über die stetige Abbildung einer Line auf ein
Flächenstück,” Mathematische Ann., vol. 38, n. 3, pp. 459-460, 1891.

[13] C. Faloutsos, “Gray codes for partial match and range queries,” IEEE
Trans. on Soft. Eng., vol. 14, pp. 1381–1393, Oct. 1988.

[14] C. Faloutsos and S. Roseman, “Fractals for secondary key retrieval,” in
Proc. 8th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Syst. Philadelphia, PA, 1989.

[15] N. Megiddo and U. Shaft, Efficient nearest neighbor indexing based on
a collection of space filling curves. IBM Almaden, San Jose, CA,
Research Report RJ 10093, 1997.

[16] G. Mainar-Ruiz and J-C. Pérez-Cortés, “Approximate nearest neighbor
search using a single space-filling curve and multiple representations of
the data points,” in Proc. 18th Int. Conf. on Pattern Recognition. Wan
Chai, Hong Kong, 2006, pp. 502–505.

[17] C. Aggarwal, “Redesigning distance functions and distance-based
applications for high dimensional data,” ACM SIGMOD Record, vol. 30,
n. 1, pp. 13–18, 2001.

[18] A. Butz, “Alternative algorithm for Hilbert's space-filling curve,” IEEE
Trans. on Computers, vol. C-20, 1971.

[19] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. of Computer Vision, vol. 60, n. 2, pp. 91–110, 2004.

[20] A. Andoni and P. Indyk, E2LSH v. 0.1 User Manual. June 2005.
[21] E. Valle, M. Cord and S. Philipp-Foliguet, “High-dimensional descriptor

indexing for large multimedia databases,” in Proc. 17th ACM Int. Conf.
on Inform. and Knowledge Manage. Napa, CA, 2008, pp. 739-748.

[22] G. Shakhnarovich, T. Darrell and P. Indyk, (eds.), Nearest-neighbor
methods in learning and vision: Theory and practice. Cambridge, MA:
The MIT Press, 2005.

[23] E. Valle, M. Cord, and S. Philipp-Foliguet, “Fast identification of visual
documents using local descriptors,” in Proc. 8th ACM Symp. on
Document Eng. São Paulo, SP, Brazil, 2008, pp. 173–176.

[24] P-A. Moëllic and C. Fluhr, “Imageval official results,” in ImagEVAL
Workshop. Amsterdam, Netherlands, 2007.

[25] E. Valle, M. Cord, and S. Philipp-Foliguet, “Content-based retrieval of
images for cultural institutions using local descriptors,” in Geometric
Modeling and Imaging — New Trends. London, UK, 2006, pp. 177–182.

[26] M. Fischler and R. Bolles, “Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, n. 6, pp. 381–395,
1981.

Eduardo Valle is a B.Sc. and a M.Sc. in Computer Sciences by the Federal
University of Minas Gerais (UFMG) and a Ph.D. in Computer Sciences by the
University of Cergy-Pontoise. Currently he is post-doctorate researcher at the
Computing Institute of the State University of Campinas UNICAMP, working
on scalability issues of machine learning and content-based retrieval. He is
particularly interested in the applications related to cultural heritage.

Matthieu Cord obtained his Ph.D. degree in Image Processing in 1998 at the
University of Cergy-Pontoise, France, and was a post-doc in 1999 at the
Katholieke Universiteit Leuven, Belgium. He has joined the ETIS labs in
France to create the image indexing research group. In 2004, he has joined the
University of Paris 6, where he is a full professor position. He has been
recently nominated to the highly selective French Research Institute (IUF).
His research interests include computer vision, image processing, machine
learning and applications to multimedia information retrieval and multimedia
processing.

Sylvie Philipp-Foliguet is a full professor at the National School of
Electronics (ENSEA) of Cergy-Pontoise, France, since 1988. She manages the

MIDI (Multimedia Indexing and Data Integration) team of the ETIS labs
(Information Processing and Systems). Her research domains are image
segmentation and interpretation. She has developed a fuzzy segmentation
method, methods for inexact graph matching and statistical learning, and
worked on applications concerning indexing and retrieval of images, videos
and 3D objects.

David Gorisse is an M.Sc. in Computer Sciences by the University of Cergy-
Pontoise and M.Sc in electrical engineering and telecommunications by ISEN.
Currently he is a Ph.D. Student in Computer Sciences in MIDI team of ETIS
at the University of Cergy-Pontoise.

