COURS (M2) RdFIA

Matthieu Cord LIP6 / SU
Thanks to N. Thome for sharing slides on NN
Outline

ConvNets as Deep Neural Networks for Vision

1. Neural Nets
2. Deep Convolutional Neural Networks
Basis of Neural Networks

Input: vector \(x \in \mathbb{R}^m \), i.e. \(x = \{x_i\}_{i \in \{1,2,\ldots,m\}} \)

Neuron output \(\hat{y} \in \mathbb{R} \): scalar
Mapping from x to \hat{y}:

1. Linear (affine) mapping: $s = w^T x + b$
2. Non-linear activation function: f: $\hat{y} = f(s)$
The Formal Neuron: Linear Mapping

- Linear (affine) mapping: \(s = \mathbf{w}^\top \mathbf{x} + b = \sum_{i=1}^{m} w_i x_i + b \)
 - \(\mathbf{w} \): normal vector to an hyperplane in \(\mathbb{R}^m \) ⇒ linear boundary
 - \(b \): bias, shift the hyperplane position

2D hyperplane: line

\[w^t x + b = 0 \]

3D hyperplane: plane
The Formal Neuron: Activation Function

- \(\hat{y} = f(\mathbf{w}^\top \mathbf{x} + b) \), f activation function
 - Popular f choices: step, sigmoid, tanh

- Step (Heaviside) function: \(H(z) = \begin{cases} 1 & \text{if } z \geq 0 \\ 0 & \text{otherwise} \end{cases} \)
Step function: Connection to Biological Neurons

Formal neuron, step activation H: $\hat{y} = H(w^T x + b)$
- $\hat{y} = 1$ (activated) $\iff w^T x \geq -b$
- $\hat{y} = 0$ (unactivated) $\iff w^T x < -b$

Biological Neurons: output activated \iff input weighted by synaptic weight \geq threshold
Sigmoid Activation Function

- Neuron output $\hat{y} = f(w^T x + b)$, f activation function
- Sigmoid: $\sigma(z) = (1 + e^{-az})^{-1}$

- $a \uparrow$: more similar to step function (step: $a \to \infty$)
- Sigmoid: linear and saturating regimes
The Formal neuron: Application to Binary Classification

- Binary Classification: label input \(x \) as belonging to class 1 or 0
- Neuron output with sigmoid: \(\hat{y} = \frac{1}{1 + e^{-a(w^T x + b)}} \)
- Sigmoid: probabilistic interpretation \(\Rightarrow \hat{y} \sim P(1/x) \)
 - Input \(x \) classified as 1 if \(P(1/x) > 0.5 \) \(\iff w^T x + b > 0 \)
 - Input \(x \) classified as 0 if \(P(1/x) < 0.5 \) \(\iff w^T x + b < 0 \)
 \(\Rightarrow \text{sign}(w^T x + b) \): linear boundary decision in input space!

![Diagram showing a 3D representation of a neuron with inputs and output, including a note on bias and its effect on the position of the decision boundary.](image-url)
The Formal neuron: Toy Example for Binary Classification

- 2d example: $m = 2$, $x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5]
- Linear mapping: $w = [1; 1]$ and $b = -2$
- Result of linear mapping: $s = w^T x + b$
The Formal neuron: Toy Example for Binary Classification

- 2d example: $m = 2$, $x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5]$
- Linear mapping: $w = [1; 1]$ and $b = -2$
- Result of linear mapping: $s = w^T x + b$
- Sigmoid activation function: $\hat{y} = \left(1 + e^{-a(w^T x + b)}\right)^{-1}$, $a = 10$
The Formal neuron: Toy Example for Binary Classification

- 2d example: \(m = 2, \; \mathbf{x} = \{x_1, x_2\} \in [-5; 5] \times [-5; 5] \)
- Linear mapping: \(\mathbf{w} = [1; 1] \) and \(b = -2 \)
- Result of linear mapping: \(s = \mathbf{w}^\top \mathbf{x} + b \)
- Sigmoid activation function: \(\hat{y} = \left(1 + e^{-a(\mathbf{w}^\top \mathbf{x} + b)}\right)^{-1}, \quad a = 1 \)
The Formal neuron: Toy Example for Binary Classification

- 2d example: \(m = 2, \mathbf{x} = \{x_1, x_2\} \in [-5; 5] \times [-5; 5] \)
- Linear mapping: \(\mathbf{w} = [1; 1] \) and \(b = -2 \)
- Result of linear mapping: \(s = \mathbf{w}^\top \mathbf{x} + b \)
- Sigmoid activation function: \(\hat{y} = \left(1 + e^{-a(\mathbf{w}^\top \mathbf{x} + b)}\right)^{-1}, \quad a = 0.1 \)
From Formal Neuron to Neural Networks

- Formal Neuron:
 1. A single scalar output
 2. Linear decision boundary for binary classification
- Single scalar output: limited for several tasks
 - Ex: multi-class classification, e.g. MNIST or CIFAR
Formal Neuron: limited to binary classification

Multi-Class Classification: use several output neurons instead of a single one! ⇒ **Perceptron**

Input x in \mathbb{R}^m

Output neuron \hat{y}_1 is a formal neuron:
- Linear (affine) mapping: $s_1 = \mathbf{w}_1^T \mathbf{x} + b_1$
- Non-linear activation function: f: $\hat{y}_1 = f(s_1)$

Linear mapping parameters:
- $\mathbf{w}_1 = \{w_{11}, \ldots, w_{m1}\} \in \mathbb{R}^m$
- $b_1 \in \mathbb{R}$
Perceptron and Multi-Class Classification

- Input x in \mathbb{R}^m
- Output neuron \hat{y}_k is a formal neuron:
 - Linear (affine) mapping: $s_k = w_k^T x + b_k$
 - Non-linear activation function: f: $\hat{y}_k = f(s_k)$
- Linear mapping parameters:
 - $w_k = \{w_{1k}, \ldots, w_{mk}\} \in \mathbb{R}^m$
 - $b_k \in \mathbb{R}$
Perceptron and Multi-Class Classification

- Input x in \mathbb{R}^m ($1 \times m$), output \hat{y}: concatenation of K formal neurons
- Linear (affine) mapping \sim matrix multiplication: $s = xW + b$
 - W matrix of size $m \times K$ - columns are w_k
 - b: bias vector - size $1 \times K$
- Element-wise non-linear activation: $\hat{y} = f(s)$
Perceptron and Multi-Class Classification

- **Soft-max Activation:**
 \[
 \hat{y}_k = f(s_k) = \frac{e^{s_k}}{\sum_{k'=1}^{K} e^{s_{k'}}}
 \]

- **Probabilistic interpretation for multi-class classification:**
 - Each output neuron \leftrightarrow class
 - $\hat{y}_k \sim P(k|x, w)$

⇒ Logistic Regression (LR) Model!
2d Toy Example for Multi-Class Classification

- $\mathbf{x} = \{x_1, x_2\} \in [-5; 5] \times [-5; 5]$, \hat{y}: 3 outputs (classes)

Linear mapping for each class:

$s_k = \mathbf{w}_k^\top \mathbf{x} + b_k$

Soft-max output:

$P(k|\mathbf{x}, \mathbf{W})$
2d Toy Example for Multi-Class Classification

- \(\mathbf{x} = \{x_1, x_2\} \in [-5; 5] \times [-5; 5], \) \(\hat{y} \): 3 outputs (classes)

Soft-max output:
\(P(k/x, \mathbf{W}) \)

Class Prediction:
\(k^* = \arg \max_k P(k/x, \mathbf{W}) \)
Beyond Linear Classification

X-OR Problem

- Logistic Regression (LR): NN with 1 input layer & 1 output layer
- LR: limited to linear decision boundaries
- **X-OR**: NOT 1 and 2 OR NOT 2 AND 1
 - X-OR: Non linear decision function
Beyond Linear Classification

- **LR**: limited to linear boundaries
- **Solution**: add a layer!

- Input x in \mathbb{R}^m, e.g. $m = 4$
- Output \hat{y} in \mathbb{R}^K ($K \neq$ classes), e.g. $K = 2$
- **Hidden layer h in \mathbb{R}^L**
Multi-Layer Perceptron

- **Hidden layer** \(h \): \(x \) projection to a new space \(\mathbb{R}^L \)
- Neural Net with \(\geq 1 \) hidden layer: Multi-Layer Perceptron (MLP)

\[h = f(xW + b) \]

- Mapping from \(x \) to \(\hat{y} \): non-linear boundary \(\Rightarrow \) activation \(f \) crucial!
Deep Neural Networks

- Adding more hidden layers: Deep Neural Networks (DNN) ⇒ Basis of Deep Learning
- Each layer h^l projects layer h^{l-1} into a new space
- Gradually learning intermediate representations useful for the task
Conclusion

- Deep Neural Networks: applicable to classification problems with non-linear decision boundaries
- Visualize prediction from fixed model parameters
- Reverse problem: **Supervised Learning**
Outline

Neural Networks

Training Deep Neural Networks
Training Multi-Layer Perceptron (MLP)

- Input x, output y
- A parametrized (w) model $x \Rightarrow y$: $f_w(x_i) = \hat{y}_i$
- Supervised context:
 - Training set $\mathcal{A} = \{(x_i, y_i^*)\}_{i\in\{1,2,...,N\}}$
 - Loss function $\ell(\hat{y}_i, y_i^*)$ for each annotated pair (x_i, y_i^*)
 - Goal: Minimizing average loss \mathcal{L} over training set: $\mathcal{L}(w) = \frac{1}{N} \sum_{i=1}^{N} \ell(\hat{y}_i, y_i^*)$
- Assumptions: parameters $w \in \mathbb{R}^d$ continuous, \mathcal{L} differentiable
- Gradient $\nabla_w = \frac{\partial \mathcal{L}}{\partial w}$: steepest direction to decrease loss $\mathcal{L}(w)$
MLP Training

- Gradient descent algorithm:
 - Initialize parameters \mathbf{w}
 - Update: $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \frac{\partial \mathcal{L}}{\partial \mathbf{w}}$
 - Until convergence, e.g. $||\nabla_{\mathbf{w}}||^2 \approx 0$
Gradient Descent

Update rule: \(w^{(t+1)} = w^{(t)} - \eta \frac{\partial L}{\partial w} \) \(\eta \) learning rate

- **Convergence ensured**? \(\Rightarrow \) provided a "well chosen" learning rate \(\eta \)

\[\begin{align*}
\mathcal{L}(w) \quad &\quad \mathcal{L}(w) \\
\text{Too small: converge very slowly} \quad &\quad \text{Too big: overshoot and even diverge}
\end{align*} \]
Gradient Descent

Update rule: \[w^{(t+1)} = w^{(t)} - \eta \frac{\partial L}{\partial w} \]

- **Global minimum?**
 - \(\Rightarrow \) convex a) vs non convex b) loss \(L(w) \)

![Graph showing convex and non convex functions](image-url)

- a) Convex function
- a) Non convex function
Supervised Learning: Multi-Class Classification

- Logistic Regression for multi-class classification
 \[s_i = x_i W + b \]
- Soft-Max (SM): \(\hat{y}_k \sim P(k/x_i, W, b) = \frac{e^{s_k}}{\sum_{k'=1}^{K} e^{s_{k'}}} \)
- Supervised loss function: \(\mathcal{L}(W, b) = \frac{1}{N} \sum_{i=1}^{N} \ell(\hat{y}_i, y_i^*) \)

1. \(y \in \{1; 2; \ldots; K\} \)
2. \(\hat{y}_i = \arg \max_{k} P(k/x_i, W, b) \)
3. \(\ell_{0/1}(\hat{y}_i, y_i^*) = \begin{cases} 1 & \text{if } \hat{y}_i \neq y_i^* \\ 0 & \text{otherwise} \end{cases} : 0/1 \text{ loss} \)
Logistic Regression Training Formulation

- Input x_i, ground truth output supervision y_i^*
- One hot-encoding for y_i^*:

 $y_{c,i}^* = \begin{cases}
 1 & \text{if } c \text{ is the ground truth class for } x_i \\
 0 & \text{otherwise}
 \end{cases}$
Logistic Regression Training Formulation

- Loss function: multi-class Cross-Entropy (CE) ℓ_{CE}

- ℓ_{CE}: Kullback-Leiber divergence between y_i^* and \hat{y}_i

$$\ell_{CE}(y_i^*, \hat{y}_i) = KL(y_i^*, \hat{y}_i) = - \sum_{c=1}^{K} y_{c,i}^* \log(\hat{y}_{c,i}) = -\log(\hat{y}_{c^*,i})$$

- △ KL asymmetric: $KL(y_i^*, \hat{y}_i) \neq KL(y_i^*, \hat{y}_i)$ △

![Diagram](image)

$$KL(y_i^*, \hat{y}_i) = -\log(\hat{y}_{c^*,i}) = -\log(0.8) \approx 0.22$$
Logistic Regression Training

- $\mathcal{L}_{CE}(W, b) = \frac{1}{N} \sum_{i=1}^{N} \ell_{CE}(\hat{y}_i, y_i^*) = -\frac{1}{N} \sum_{i=1}^{N} \log(\hat{y}_{c,i})$
- ℓ_{CE} smooth convex upper bound of $\ell_{0/1}$
 \Rightarrow gradient descent optimization
- Gradient descent: $W^{(t+1)} = W^{(t)} - \eta \frac{\partial \mathcal{L}_{CE}}{\partial W}$, $b^{(t+1)} = b^{(t)} - \eta \frac{\partial \mathcal{L}_{CE}}{\partial b}$
- **MAIN CHALLENGE:** computing $\frac{\partial \mathcal{L}_{CE}}{\partial W} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}}{\partial W}$?
 \Rightarrow **Key Property:** chain rule $\frac{\partial x}{\partial z} = \frac{\partial x}{\partial y} \frac{\partial y}{\partial z}$
 \Rightarrow Backpropagation of gradient error!
The chain rule is given by:
\[
\frac{\partial l}{\partial x} = \frac{\partial l}{\partial y} \frac{\partial y}{\partial x}
\]

For logistic regression, we have:
\[
\frac{\partial l_{CE}}{\partial W} = \frac{\partial l_{CE}}{\partial y_i} \frac{\partial y_i}{\partial s_i} \frac{\partial s_i}{\partial W}
\]
Logistic Regression Training: Backpropagation

\[
\frac{\partial l_{CE}}{\partial W} = \frac{\partial l_{CE}}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s_i} \frac{\partial s_i}{\partial W}, \quad l_{CE}(\hat{y}_i, y_i^*) = -\log(\hat{y}_{c^*}, i) \Rightarrow \text{Update for 1 example:}
\]

1. \[
\frac{\partial l_{CE}}{\partial \hat{y}_i} = \frac{-1}{\hat{y}_{c^*}, i} = \frac{-1}{\hat{y}_i} \odot \delta_{c,c^*}
\]

2. \[
\frac{\partial l_{CE}}{\partial s_i} = \hat{y}_i - y_i^* = \delta_i
\]

3. \[
\frac{\partial l_{CE}}{\partial W} = x_i^T \delta_i
\]
Logistic Regression Training: Backpropagation

- Whole dataset: data matrix $X (N \times m)$, label matrix $\hat{Y}, Y^* (N \times K)$

- $L_{CE}(W, b) = -\frac{1}{N} \sum_{i=1}^{N} \log(\hat{y}_{c^*,i})$, $\frac{\partial L_{CE}}{\partial W} = \frac{\partial L_{CE}}{\partial \hat{Y}} \frac{\partial \hat{Y}}{\partial S} \frac{\partial S}{\partial W}$

- $\frac{\partial L_{CE}}{\partial s} = \hat{Y} - Y^* = \Delta^y$

- $\frac{\partial L_{CE}}{\partial W} = X^T \Delta^y$
Perceptron Training: Backpropagation

- Perceptron vs Logistic Regression: adding hidden layer (sigmoid)
- **Goal:** Train parameters W^y and W^h (+bias) with Backpropagation

 \[
 \begin{align*}
 \frac{\partial L_{CE}}{\partial W^y} &= \frac{1}{N} \sum_{i=1}^{N} \frac{\partial L_{CE}}{\partial W^y} \\
 \frac{\partial L_{CE}}{\partial W^h} &= \frac{1}{N} \sum_{i=1}^{N} \frac{\partial L_{CE}}{\partial W^h}
 \end{align*}
 \]

- Last hidden layer \sim Logistic Regression
- First hidden layer: $\frac{\partial L_{CE}}{\partial W^h} = x_i^T \frac{\partial L_{CE}}{\partial u_i}$ \Rightarrow computing $\frac{\partial L_{CE}}{\partial u_i} = \delta_i^h$
Perceptron Training: Backpropagation

- Computing \(\frac{\partial \ell_{CE}}{\partial u_i} = \delta_i^h \) \(\Rightarrow \) use chain rule: \(\frac{\partial \ell_{CE}}{\partial u_i} = \frac{\partial \ell_{CE}}{\partial v_i} \frac{\partial v_i}{\partial h_i} \frac{\partial h_i}{\partial u_i} \)

- ... Leading to: \(\frac{\partial \ell_{CE}}{\partial u_i} = \delta_i^h = \delta_i^y T W^y \odot \sigma'(h_i) = \delta_i^y T W^y \odot (h_i \odot (1 - h_i)) \)
Deep Neural Network Training: Backpropagation

- Multi-Layer Perceptron (MLP): adding more hidden layers
- Backpropagation update ~ Perceptron: assuming $\frac{\partial L}{\partial u_{l+1}} = \Delta^{l+1}$ known
 - $\frac{\partial L}{\partial W^{l+1}} = H_l^T \Delta^{l+1}$
 - Computing $\frac{\partial L}{\partial U_l} = \Delta^l$ ($= \Delta^{l+1}^T W^{l+1} \odot H_l \odot (1 - H_l)$ sigmoid)
 - $\frac{\partial L}{\partial W^l} = H_{l-1}^T \Delta^{h_l}$
Neural Network Training: Optimization Issues

- Classification loss over training set (vectorized w, b ignored):
 \[
 \mathcal{L}_{CE}(w) = \frac{1}{N} \sum_{i=1}^{N} \ell_{CE}(\hat{y}_i, y^*_i) = -\frac{1}{N} \sum_{i=1}^{N} \log(\hat{y}_{c*,i})
 \]

- Gradient descent optimization:
 \[
 w^{(t+1)} = w^{(t)} - \eta \frac{\partial \mathcal{L}_{CE}}{\partial w} (w^{(t)}) = w^{(t)} - \eta \nabla_w^{(t)}
 \]

- Gradient $\nabla_w^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}(\hat{y}_i, y^*_i)}{\partial w} (w^{(t)})$ linearly scales wrt:
 - w dimension
 - Training set size

 ⇒ Too slow even for moderate dimensionality & dataset size!
Stochastic Gradient Descent

- **Solution**: approximate $\nabla^{(t)} w = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}(\hat{y}_i, y_i^*)}{\partial w} (w^{(t)})$ with subset of examples

 \Rightarrow **Stochastic Gradient Descent (SGD)**

 - Use a single example (online):
 \[
 \nabla^{(t)} w \approx \frac{\partial \ell_{CE}(\hat{y}_i, y_i^*)}{\partial w} (w^{(t)})
 \]

 - Mini-batch: use $B < N$ examples:
 \[
 \nabla^{(t)} w \approx \frac{1}{B} \sum_{i=1}^{B} \frac{\partial \ell_{CE}(\hat{y}_i, y_i^*)}{\partial w} (w^{(t)})
 \]

[Diagram showing Full gradient, SGD (online), SGD (mini-batch)]
Stochastic Gradient Descent

- **SGD**: approximation of the true Gradient ∇_w!
 - Noisy gradient can lead to bad direction, increase loss
 - **BUT**: much more parameter updates: online $\times N$, mini-batch $\times \frac{N}{B}$
 - **Faster convergence**, at the core of Deep Learning for large scale datasets
Optimization: Learning Rate Decay

- Gradient descent optimization: \(w^{(t+1)} = w^{(t)} - \eta \nabla_w^{(t)} \)
- \(\eta \) setup ? \(\Rightarrow \) open question
- Learning Rate Decay: decrease \(\eta \) during training progress
 - Inverse (time-based) decay: \(\eta_t = \frac{\eta_0}{1 + r \cdot t} \), \(r \) decay rate
 - Exponential decay: \(\eta_t = \eta_0 \cdot e^{-\lambda t} \)
 - Step Decay \(\eta_t = \eta_0 \cdot r^{t/t_u} \) ...

Exponential Decay \((\eta_0 = 0.1, \lambda = 0.1s) \)
Step Decay \((\eta_0 = 0.1, r = 0.5, t_u = 10) \)
Generalization and Overfitting

- **Learning:** minimizing classification loss \mathcal{L}_{CE} over training set
 - Training set: sample representing data vs labels distributions
 - **Ultimate goal:** train a prediction function with low prediction error on the true (unknown) data distribution

\[\mathcal{L}_{train} = 4, \quad \mathcal{L}_{train} = 9 \]
\[\mathcal{L}_{test} = 15, \quad \mathcal{L}_{test} = 13 \]

\Rightarrow Optimization \neq Machine Learning!
\Rightarrow Generalization / Overfitting!
Regularization

- **Regularization**: improving generalization, *i.e.* test (*≠* train) performances
- Structural regularization: add *Prior* \(R(w) \) in training objective:
 \[
 \mathcal{L}(w) = \mathcal{L}_{CE}(w) + \alpha R(w)
 \]

- **\(L^2 \) regularization**: weight decay, \(R(w) = ||w||^2 \)
 - Commonly used in neural networks
 - Theoretical justifications, generalization bounds (SVM)
- Other possible \(R(w) \): \(L^1 \) regularization, dropout, *etc*
Deep for image classification

- M classes
- M output neurons
 - 1 neuron / class

Question: how to connect the image to the MLP?
Outline

ConvNets as Deep Neural Networks for Vision

1. Neural Nets
2. Deep Convolutional Neural Networks