
Dynamic Adaptation of Replication Strategies for Reliable Agents

Jean-Pierre Briot; Zahia Guessoum; Sébastien Charpentier;
Samir Aknine; Olivier Marin; Pierre Sens

LIP6, Université de Paris 6
BP 169, 4 place Jussieu, F-75252 Paris Cedex 5

Jean-Pierre.Briot@lip6.fr; Zahia.Guessoum@lip6.fr; charpentier@mangoosta.net;
Samir.Aknine@lip6.fr; Olivier.Marin@lip6.fr; Pierre.Sens@lip6.fr

Abstract

To make large-scale multi-agent systems reliable, we propose an adaptive application of replication strategies. Critical
agents are replicated to avoid failures. As criticality of agents may evolve during the course of computation and problem
solving, we need to dynamically and automatically adapt the number of replicas of agents, in order to maximize their
reliability and availability based on available resources. We are studying an approach and mechanisms for evaluating the
criticality of a given agent (based on application-level semantic information, e.g. messages intention, and also system-
level statistical information, e.g., communication load) and for deciding what strategy to apply (e.g., active replication,
passive) and how to parameterize it (e.g., number of replicas).
In this paper, we first present the replication mechanism and the framework named DarX that we developed to repli-
cate agents. We then describe a new model to evaluate dynamically the criticality of agents. Then we describe the
implementation of this model with the DarX fault-tolerant framework.

1 Introduction

A multi-agent system is a set of autonomous and inter-
active entities called agents (Avouris and Gasser, 1992).
Recent real-life applications (e.g., intensive care monitor-
ing, air traffic control and process control) are often dis-
tributed and must run continuously without any interrup-
tion. As a distributed system, however, multi-agent sys-
tems are exposed to possibility of failure of their hardware
and/or software components. The failure of one compo-
nent can often evolve into the failure of the whole system.
To make these large-scale multi-agent systems reliable, an
obvious solution is the introduction of redundancy: dupli-
cation (replication) of the critical components.

Replication mechanisms have been successfully ap-
plied for various distributed applications (Guerraoui and
Schiper, 1997), e.g. data-bases. But in most cases, repli-
cation is decided by the programmer and applied stati-
cally, before the application starts. This works fine be-
cause the criticality of components (e.g., main servers)
may be well identified and remains stable during the ap-
plication run.

Opposite to that, in the case of dynamic and adap-
tive multi-agent applications, the criticality of agents may
evolve dynamically during the course of computation. More-
over, the available resources are often limited. Thus, si-
multaneous replication of all the components of a large-
scale system is not feasible. The idea is then to auto-
matically and dynamically apply replication mechanisms
where (to which agents) and when it is most needed. In

this paper we will describe our approach to this objective
and the realized tool to build easily reliable multi-agent
systems.

This paper is organized as follows. Section 2 presents
fault tolerance concepts and replication principles. Sec-
tion 3 introduces a new approach of dynamic control of
replication. Section 4 presents the DarX framework that
we developed to replicate agents. This framework intro-
duces novel features for dynamic control of replication.
Section 5 describes our approach to compute agent crit-
icality in order to guide replication. Section 6 describes
the implementation of this solution and our preliminary
experiments.

2 Fault-Tolerance

2.1 First and Simple Example

We consider the example of a distributed multi-agent sys-
tem that helps at scheduling meetings. Each user has a
personal assistant agent which manages his calendar. This
agent interacts with:

� the user to receive his meeting requests and asso-
ciated information (a title, a description, possible
dates, participants, priority, etc.) ,

� the other agents of the system to schedule a meet-
ing.

If the assistant agent of one important participant (initia-
tor or prime participant) in a meeting fails (e.g., his ma-



chine crashes), this may disorganize the whole process.
As the application is very dynamic - new meeting negotia-
tions start and complete dynamically and simultaneously -
decision for replication should be done automatically and
dynamically.

2.2 Type of Faults

To achieve fault-tolerance, several distributed systems repli-
cate their critical components. In this section, we define a
classification of failures in multi-agent systems.

In computing systems, faults can for example occur in
different sections of source code, and can result in a wide
range of consequences. In distributed systems, another
kind of faults can be considered: the communication fail-
ures.

A fault classification scheme is often used to catego-
rize faults that have the same characteristics. The de-
fined categories can then be used to collect statistics about
faults and devise methods for fault prevention and detec-
tion. Thus, several classifications of failures have been
proposed.

A. Fedoruk and R. Deters propose a classification of
failures in multi-agent systems (Fedoruk and Deters, 2002).
They group failures in five categories:

� Program bugs,

� Unforeseen states,

� Processor faults,

� Communication fault,

� Emerging unwanted behavior.

However, it is not easy to define the unwanted states of
an agent because he is often adaptive. Moreover, a multi-
agent system has no global control. So, the emerging un-
wanted behavior can be detected by an external observer,
but it cannot be easily determined automatically by the
system itself.

In our proposed solution, we consider, two categories
of failures:

� Processor faults,

� Communication fault.

We think that our approach could also be applied to other
categories of failures.

2.3 Techniques of Replication

This section, first, summarizes the principles of replica-
tion. It then points out the limits of current replication
techniques and replication tools.

2.3.1 Principles of Replication

Replication of data and/or computation is an effective way
to achieve fault tolerance in distributed systems. A repli-
cated software component is defined as a software compo-
nent that possesses a representation on two or more hosts
(Guerraoui et al., 1989). There are two main types of
replication protocols:

� active replication, in which all replicas process con-
currently all input messages,

� passive replication, in which only one of the repli-
cas processes all input messages and periodically
transmits its current state to the other replicas in or-
der to maintain consistency.

Active replication strategies provide fast recovery but
lead to a high overhead. If the degree of replication is n,
the n replicas are activated simultaneously to produce one
result.

Passive replication minimizes processor utilization by
activating redundant replicas only in case of failures. That
is: if the active replica is found to be faulty, a new replica
is elected among the set of passive ones and the execu-
tion is restarted from the last saved state. This technique
requires less CPU resources than the active approach but
it needs a checkpoint management which remains expen-
sive in processing time and space.

The active replication provides a fast recovery delay.
This kind of technique is dedicated to applications with
real-time constraints which require short recovery delays.
The passive replication scheme has a low overhead under
failure free execution but does not provide short recovery
delays. The choice of the most suitable strategy is directly
dependent on the environment context, especially the fail-
ure rate, and the application requirements in terms of re-
covery delay and overhead. Active approaches should
be chosen either when the failure rate becomes too high
or the application design specifies hard time constraints.
Otherwise, passive approaches are preferable.

2.3.2 Limits of Current Replication Techniques

Many toolkits (e.g., (Guerraoui et al., 1989) and (van Re-
nesse et al., 1996)) include replication facilities to build
reliable applications. However, most of them are not quite
flexible enough to implement adaptive replication mech-
anism.

Therefore we designed a specific and novel frame-
work for replication, named DarX (see details in section
4), which allows dynamic replication and dynamic adap-
tation of the replication policy (e.g., passive to active,
changing the number of replicas).



3 Towards Dynamic Replication and
Adaptive Control

Several solutions have been proposed to replicate distributed
systems. These solutions are often used by the designer
to replicate the system components before run time. The
number of replicas and the replication strategy are explic-
itly and statically defined by the designer before run time.
However, these solutions are not suitable to multi-agent
systems. The solution we propose is mainly characterized
by dynamic replication and adaptive control.

3.1 Dynamic Replication

Several replication strategies (mainly, active and passive)
can be used to replicate Agents. As explained in Section
2.3.1, each strategy has its pros and cons, the tradeoff be-
ing recovery speed versus overhead. Thus, the choice of
the most suitable strategy relies on the environment con-
text.

In most multi-agent applications, the environment con-
text is very dynamic. So, the choice of the replication
strategy of each component, which relies on a part of
this environment, must be determined dynamically and
adapted to the environment changes.

Moreover, a multi-agent system component which can
be very critical at a moment can loose its critically later.
If we consider the replication cost which is very high, the
number of replicas of these components must be therefore
dynamically updated.

Thus, the solution we propose allows to dynamically
adapt the number of replicas and the replication strategy.
This solution is provided by the framework DARX (see
section 4).

3.2 Adaptive Control

DarX provides the needed adaptive mechanisms to repli-
cate agents and to modify the replication strategy. Mean-
while, we cannot always replicate all the agents of the
system because the available resources are usually lim-
ited. In the given example (section 2.1), we can con-
sider more than 100 assistant agents and resources that
do not allow to duplicate more than 60 agents. The prob-
lem therefore is to determine the most critical agents and
then the needed number of replicas of these agents.

We distinguish two cases:

� the agent’s criticality is static,

� the agent’s criticality is dynamic.

In the first case, multi-agent systems have static organi-
zation structures, static behaviors of agents, and a small
number of agents. Critical agents can be therefore identi-
fied by the designer and can be replicated by the program-
mer before run time.

In the second case, multi-agent systems may have dy-
namic organization structures, dynamic behaviors of agents,
and a large number of agents. So, the agents criticality
cannot be determined before run time. The agent criti-
cality can be therefore based on these dynamic organiza-
tional structures. The problem is how to determine dy-
namically these structures to evaluate the agent critical-
ity? Thus, we propose a new approach for observing the
domain agents and evaluating dynamically their critical-
ity. This approach is based on two kinds of information:
semantic-level information and system-level information.

4 Darx

DarX is a framework to design reliable distributed appli-
cations which include a set of distributed communicating
entities (agents). Each agent can be dynamically repli-
cated an unlimited number of times and with different
replication strategies (passive and active).

4.1 Darx Architecture

DarX includes group membership management to dynam-
ically add or remove replicas. It also provides atomic
and ordered multi-cast for the replication groups’ internal
communication. For portability and compatibility issues,
DarX is implemented in Java.

RemoteTask

RemoteTask

Agent

Agent

Agent

Agent

Agent

Agent

group 1

group 2

TaskShell

Task Supervision

Figure 1: DarX application architecture

A replication group is an opaque entity underlying ev-
ery application agent. The number of replicas and the
internal strategy of a specific agent are totally hidden to
the other application agents. Each replication group has
exactly one leader which communicates with the other
agents. The leader also checks the liveness of each replica
and is responsible for reliable broadcasting. In case of
failure of a leader, a new one is automatically elected
among the set of remaining replicas.



0

5

10

15

20

25

30

35

40

45

100 200 400 800 1600 3200 6400

T
im

e 
(m

s)

Message size (bytes)

RD−1 (local)
RD−2
RD−3

Figure 2: Communication cost as a function of the repli-
cation degree

DarX provides global naming. Each replicated agent
has a global name which is independent of the current lo-
cation of its replicas. The underlying system allows to
handle the agent’s execution and communication. Each
agent is itself wrapped into a TaskShell (Figure 1), which
acts as a replication group manager and is responsible for
delivering received messages to all the members of the
replication group, thus preserving the transparency for the
supported application. Input messages are intercepted by
the TaskShell, enabling message caching. Hence all mes-
sages get to be processed in the same order within a repli-
cation group.

An agent can communicate with a remote agent, unre-
garding whether it is a single agent or a replication group,
by using a local proxy implemented by the RemoteTask
interface. Each RemoteTask references a distinct remote
entity considered as the leader of its replication group.
The reliability features are thus brought to agents by an
instance of a DarX server (DarxServer) running on ev-
ery location. Each DarxServer implements the required
replication services, backed up by a common global nam-
ing/location service.

4.2 Measurements

Our first experiments and measurements of DarX are very
promising. We evaluated several costs and made compar-
isons with other systems (see (Marin et al., 2001)).

In this paper, we just show the cost of sending a mes-
sage to a replication group using the active replication
strategy. Figure 2 presents three configurations with dif-
ferent replication degrees. In the RD-1 configuration, the
task is local and not replicated. In the RD-2 (resp. RD-
3) configuration, there is one (resp. two) replica(s); the
leader being on the sending host and the other replica(s)
residing on one (or two) distinct remote host(s).

5 Adaptive Control of Replication

We will now detail our approach for dynamically evaluat-
ing criticality of each agent in order to perform dynamic
replication where and when best needed.

5.1 Hypothesis and principles

We want some automatic mechanism for generality rea-
sons. But in order to be efficient, we also need some
prior input from the designer of the application. This de-
signer can choose among several approaches of replica-
tion: static and dynamic.

In the proposed dynamic approach, the agent critical-
ity relies on two kinds of information:

� System-level information. It will be based on stan-
dard measurements (communication load, process-
ing time...). We are currently evaluating their sig-
nificance to measure the activity of an agent.

� Semantic-level information.

Several aspects may be considered (importance of agents,
independence of agents, importance of messages...). We
decided to use the concept of role, because it captures the
importance of an agent in an organization, and its depen-
dencies to other agents.

Note that our approach is generic and that it is not
related to a specific interaction language or application
domain. Also agents can be either reactive or cognitive.
We just suppose that they communicate with some agent
communication language such as ACL (FIPA, 1997) and
KQML (Finin et al., 1994).

5.2 Example

The application designer will manually evaluate critical-
ity of the roles, corresponding to their ”importance” in the
organization and in the computation.

In the example introduced in section 2.1, we are con-
sidering two roles: Initiator and Participant (Finin et al.,
1994). Their respective weights will be set by the appli-
cation designer to respectively 0.7 and 0.3 (see 1).

Table 1: Examples of roles and their weights

Roles Weights
Initiator 0.7
Participant 0.3

5.3 Architecture

In order to track the dynamical adoption of roles by agents,
we propose a role recognition method. Our approach is
based on the observation of the agent execution and their



interactions to recognize the roles of each agent and to
evaluate his processing activity. This is used to dynami-
cally compute the criticality of an agent.

Figure 3: General architecture for replication control

In order to collect the data, we associate an obser-
vation module to each DarxServer on each machine (see
section 4). This module will collect events (provided by
DarxServer). A role analysis is then associated to each
agent (leader of the group replica) of this machine, by
considering his sent and received messages.

The basic architecture controlling the replication of
agents is shown in Figure 3.

The next sections describe the role analysis and activ-
ity analysis methods that we propose.

5.4 Role Analysis

We consider two cases. In the first case, each agent dis-
plays explicitly his roles or interaction protocols. The
roles of each agent are thus easily deduced from interac-
tion events. In the second case, agents do not display their
roles nor their interaction protocols. The agent roles are
deduced from the interaction events by the role analysis
module.

In this analysis, attention is focused on the precise or-
dering of interaction events (exchanged messages). The
role module captures and represents the set of interaction
events resulting from the domain agent interactions (sent
and received messages).

We associate to each agent an entity that analyses the
associated interaction events. This analysis determines
the roles of the agent. Figure 4 illustrates the various steps
of this analysis.

To represent the agent interactions, several methods
have been proposed such as state machines and Petri nets
(Fallah-Seghrouchni et al., 1999). For our application,
state machines provide a well suitable representation. Each
role interaction model is represented by an augmented
transition network (ATN) (Woods, 1970). A transition
represents an interaction event (sending or receiving a mes-
sage). Figure 5 shows an example of ATN that represents
the interaction model of the role Initiator described below.

A library of roles definition is used to recognize the
active roles. To facilitate the initialization of this library,

Figure 4: Roles recognition

Figure 5: Example of ATN

we have introduced a role description language. Each role
is represented by a set of interaction events. This language
is based on a set of operators (similar to those proposed
in (M. Wooldridge and Kinny, 1999), see Table 2), inter-
action events and variables.

Interaction events represent the exchanged messages.
We distinguish two kinds of interaction events: ReceiveMes-
sage and SendMessage. The attributes of the SendMes-
sage and ReceiveMessage interaction events are similar
to the attributes of ACL messages:

� SendMessage(Communicative act, sender, receiver,
content, reply-with, ...).

� ReceiveMessage(Communicative act, sender, receiver,
content, reply-with, ...).

Table 2: Operators

Operators Interpretation
A.B Separate two consecutive events
AjB Or
AjjB Parallel events
(A)* O time or more
(A)+ 1 time or more
(A)n n time or more
[A] Facultative



In order to be able to filter various messages, we in-
troduce the ”wild card” character ?. For example, in the
interaction event ReceiveMessage (”CFP”, ”X”, ”Y”, ?),
the content is unconstrained. So, this interaction event
can match any other interaction event with the communi-
cation act CFP, the sender ”X”, the receiver ”Y” and any
contents.

Figure 6: Contract net protocol

In the example of scheduling meetings, the assistant
agents use the contract net protocol (FIPA, 1997) (see 6)
to schedule a meeting. The interaction model of the ini-
tiator role is deduced from the contract net protocol. It is
described in Table 3.

This description represents the different steps (sent
and received messages) of the Initiator. It can be inter-
preted as follows (FIPA, 1997).

� A call for proposals message is sent to the partici-
pants from the initiator following the FIPA Contract
Net protocol.

� The participants reply to the initiator with the pro-
posed meeting times. The form of this message is
either a proposal or a refusal.

� The initiator sends accept or reject messages to par-
ticipants.

� The participants which agree to the proposed meet-
ing inform the initiator that they have completed the
request to schedule a meeting (confirm).

Table 3: Description of the role Initiator

(SendMessage(”CFP”, Agent,?,?,M1))+ .
((ReceiveMessageEvent(”propose”, ?, Agent,?,M2, M1)) j
(ReceiveMessageEvent(”refuse”, ?, Agent, ?,M2, M1)))+ .
((SendMessage(”accept”, Agent,?,?, M2, M1)) j
(SendMessage(”reject”, Agent,?,?, M2, M1)))+ .
(ReceiveMessageEvent(”confirm”, ?, Agent,?,M2))+ .

Note that in many cases, roles can be deduced before
the end of the associated sequence of interaction events
(final state of the associated ATN). In the scheduling meet-
ings example, the role Initiator may be recognized as soon
as the ”CFP” message is received, as it is unique to this
role.

5.5 Activity Analysis

In multi-agent systems, the internal activity of agents can-
not be observed, because it is private. The observation is
restricted to events. To evaluate the degree of the agent
activity, we use system events that are collected at the sys-
tem level. We are considering two kinds of events: CPU
time and communication load. We are currently evalu-
ating the significance of these measures as indicators of
agent activity, to be useful to calculate agent criticality.

For an agent Agenti and a given time interval �t,
these events provide:

� The used time of CPU (cpi),

� The communication load (cli).

cpi and cli may be then used to measure the agent
degree of activity awi as follows:

awi = (d1 � cpi=�t+ d2 � cli=CL)=(d1 + d2) (1)

where:

� CL is the global communication load,

� d1 and d2 are weights introduced by the user.

5.6 Agent Criticality

The analysis of events (system events and interaction events)
provides two kinds of information: the roles and the de-
gree of activity of each agent. This information is then
processed by the agent’s criticality module. The latter re-
lies on a table T (an example is given in Table 1) that
defines the weights of roles. This table is initialized by
the application designer. Table 3 gives examples of roles
and their weights.

The criticality of the agent Agenti which fulfills the
roles ri1 to rim is computed as follows:

wi = (a1 �

X

j=1;m

T [rij]] + a2 � awi)=(a1 + a2) (2)

Where: a1 and a2 are the weights given to the two
kinds of parameters (roles and degree of activity). They
are introduced by the designer.

For each Agent Ai, its criticality wi is used to com-
pute the number of his replicas.



5.7 Replication

An agent is replicated according to:

� wi: his criticality,

� W: the sum of the domain agents’ criticality,

� rm: the minimum number of replicas which is in-
troduced by the designer,

� Rm: the available resources which define the max-
imum number of possible simultaneous replicas.

The number of replicas nbi of Agenti can be determined
as follows:

nbi = rounded(rm + wi �Rm=W ) (3)

Table 4: Examples of agents, their weights and the asso-
ciated number of replicas

Agents Criticality Number of replicas
per agent per agent

Agent1, Agent2,
Agent3, Agent 4 0,9 2
Agent5, Agent6,
Agent7, Agent8,
Agent9, Agent10,
Agent11, Agent12,
Agent13, Agent14 0.5 1
Agent15, Agent16,
Agent17, Agent18,
Agent19, Agent20,
Agent21, Agent22,
Agent23, Agent24 0.2 0

Table 4 gives an example of agents, their criticality
and the associated replicas when Rm = 20 and rm= 0.
Note that (rm=0) means that the agent is not replicated.

The numbers of replicas are then used by DarX to up-
date the number of replicas of each agent.

6 Experiments

We made some preliminary experiments using the sce-
nario of agents scheduling their meetings, as introduced
in section 2.1.

Agents take randomly roles of Initiator, choose Partic-
ipants for scheduling meetings or remain inactive (with-
out any role). Several meetings are scheduled simultane-
ously. The number of critical agents (which can be either
Initiator or Participant) is 60% of the number of agents.

As the distributed observation module implementa-
tion has not been completed yet, we have run these pre-
liminary experiments on a single machine. In order to

simulate the presence of faults, we implemented a failure
simulator randomly stopping the thread of an agent (cho-
sen randomly). The number of the introduced faults was
set equal to the number of agents. We repeated several
times the experiments with a variable number of resources
(number of replicas that can be used).

From these first experiments, we found that the num-
ber of resources should be at least equal to the number of
critical agents.

We are currently working on more experiments and
measurements in order to better evaluate our adaptive con-
trol architecture and to compare it to other control meth-
ods (including random replication).

7 Related Work

Several approaches address the multi-faced problem of
fault tolerance in multi-agent systems. These works can
be classified in two main categories. A first approach
focuses especially on the reliability of an agent within
a multi-agent system. This approach handles the seri-
ous problems of communication, interaction and coordi-
nation of agents (and their replicas) with the other agents
of the system. The second approach addresses the dif-
ficulties of making reliable an agent, particularly a mo-
bile agent, which is more exposed to security problems
(Pleisch and Schiper, 2001) (Silva and Popescu-Zeletin,
1998) (Johansen et al., 199) (Strasser et al., 1998). This
second approach is beyond the scope of this paper.

Within the family of reactive multi-agent systems, some
systems offer high redundancy. A good example is a sys-
tem based on the metaphor of ant nests. Unfortunately:

� we cannot design any application in term of such
reactive multi-agent systems. Basically we do not
have yet a good methodology.

� we cannot apply such simple redundancy scheme
onto more cognitive multi-agent systems as this would
cause inconsistencies between copies of a single
agent.

Some work (Decker et al., 1997) offers dynamic cloning
of specific agents in multi-agent systems. But their mo-
tivation is different, the objective is to improve the avail-
ability of an agent if it is too congested. The agents con-
sidered seem to have only functional tasks (with no chang-
ing state) and fault-tolerance aspects are not considered.

S. Hagg introduces sentinels to protect the agents from
some undesirable states (Hagg, 1997). Sentinels represent
the control structure of their multi-agent system. They
need to build models of each agent to perform function-
alities and monitor communications in order to react to
faults. Each sentinel is associated by the designer to one
functionality of the multi-agent system. This sentinel han-
dles the different agents which interact to achieve the func-
tionality. The analysis of his believes on these agents en-
ables the sentinel to detect a fault when it occurs. Adding



sentinels to multi-agent systems seems to be a good ap-
proach, however the sentinels themselves represent fail-
ure points for the multi-agent system.

(Kumar et al., 2000) present a fault tolerant multi-
agent architecture that regroups agents and brokers. They
address the problem of recovering the multi-agent system
from only its broker failures.

(Fedoruk and Deters, 2002) propose to use proxies.
This approach tries to make transparent the use of agent
replication, i.e. enabling the replicas of an agent to act
as a same entity regarding the other agents of the system
which will not know that they are interacting with a group
of replicas. The proxy manages the state of the replicas.
To do so, all the external and internal communications of
the group are redirected to the proxy. However this in-
creases the workload of the proxy which is a quasi central
entity. To make it reliable, they propose to build, for in-
stance, a hierarchy of proxies for each group of replicas.
They point out the specific problems of read/write con-
sistency, resource locking also discussed in (Silva et al.,
2000).

In distributed computing, many toolkits include repli-
cation facilities to build reliable application. However,
many of products are not enough flexible to implement
an adapted replication. MetaXa (M.Golm, 1998) imple-
ments in Java active and passive replication in a flexible
way. Authors extended Java with a reactive metalevel ar-
chitecture. Like in DarX, the replication is transparent.
However, MetaXa relies on a modified Java interpreter.
GARF (Guerraoui et al., 1989) realizes fault-tolerant Smalltalk
machines using active replication. Similar to MetaXa,
GARX uses a metalevel and provides different replication
strategies. But, it does not provide adaptive mechanism to
apply these strategies.

8 Conclusion

Large-scale multi-agent systems are often distributed and
must run without any interruption. To make these systems
reliable, we proposed a new approach to evaluate dynam-
ically the criticality of agents. This approach is based on
the concepts of roles and degree of activity. The agent
criticality is then used to replicate agents in order to max-
imize their reliability and availability based on available
resources.

To validate the proposed approach, we realized a fault-
tolerant framework (Darx). The integration of DARX with
a multi-agent platform, such as DIMA ieee99, provides
a generic fault-tolerant multi-agent platform. In order
to validate this fault-tolerant multi-agent platform, two
small applications have been developed (meetings schedul-
ing and crisis management system). They are intended at
evaluating our model and architecture viability. They aim
also at completing the model and adjusting the parame-
ters. The obtained results are interesting and promising.
However, more experiments with real-life applications are

needed to validate the proposed approach.

References

N. A. Avouris and L. Gasser. Distributed Artificial Intel-
ligence: Theory and Praxis, chapter Object-Oriented
Concurrent Programming and Distributed Artificial In-
telligence, pages 81–108. Kluwer Academic Publisher,
1992.

K. Decker, K. Sycara, and M. Williamson. Cloning for
intelligent adaptive information agents. In ATAL’97,
LNAI, pages 63–75. Springer Verlag, 1997.

A. El Fallah-Seghrouchni, S. Haddad, and H. Mazouzi.
Protocol engineering for multiagent interactions. In
MAAMAW’99, number 1647 in LNAI, pages 128–135.
Springer Verlag, 1999.

A. Fedoruk and R. Deters. Improving fault-tolerance by
replicating agents. In AAMAS2002, Boulogna, Italy,
2002.

T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML
as an agent communication language. In Third interna-
tional conference on information and knowledge man-
agement. ACM Press, November 1994.

FIPA. Specification. part 2, agent commu-
nication language, foundation for intelli-
gent physical agents, geneva, switzerland.
http://www.cselt.stet.it/ufv/leonardo/fipa/index.htm,
1997.

R. Guerraoui, B. Garbinato, and K. Mazouni. Lessons
from designing and implementing garf. In Proceedings
Objects Oriented Parallel and Distributed Computatio,
volume LNCS 791, pages 238–256, Nottingham, 1989.

R. Guerraoui and A. Schiper. Software-based replication
for fault tolerance. IEEE Computer, 30(4):68–74, April
1997.

S. Hagg. A sentinel approach to fault handling in multi-
agent systems. In C. Zhang and D. Lukose, editors,
Multi-Agent Systems, Methodologies and Applications,
number 1286 in LNCS, pages 190–195. Springer Ver-
lag, 1997.

D. Johansen, K. Marzullo, F. B. Schneider, K. Jacob-
sen, and D. Zagorodnov. Nap: Practical fault-tolerance
for itinerant computations. In 19th IEEE Interna-
tional Conference on Distributed Computing Systems
(ICDCS), Austin, Texas, 199.

S. Kumar, P. R. Cohen, and H. J. Levesque. The
adaptive agent architecture: Achieving fault-tolerance
using persistent broker teams. In The Fourth
International Conference on Multi-Agent Systems
ICMAS;Boston;USA; 2000:



N. Jennings M. Wooldridge and D. Kinny. The method-
ology gaia for agent-oriented analysis and design. AI,
10(2):1–27, 1999.

O. Marin, P. Sens, J.-P. Briot, and Z. Guessoum. Towards
adaptive fault-tolerance for distributedmulti-agent sys-
tems. In ERSADS’2001, pages 195–201, 2001.

M.Golm. Metaxa and the future of reflection. In OOP-
SLA -Workshop on Reflective Programming in C++
and Java, pages 238–256. Springer Verlag, 1998.

Stefan Pleisch and Andr Schiper. Fatomas - a fault-
tolerant mobile agent system based on the agent-
dependent approach. In In Proceedings of the IEEE
Int. Conf. on Dependable Systems and Networks
(DSN 001), 2001.

F. De Assis Silva and R. Popescu-Zeletin. An approach
for providing mobile agent fault tolerance. In S. N.
Maheshwari, editor, Second International Workshop on
Mobile Agents, number 1477 in LNCS, pages 14–25.
Springer Verlag, 1998.

L. Silva, V. Batista, and J. Silva. Fault-tolerant execution
of mobile agents. In International Conference on De-
pendable Systems and Networks, pages 135–143, 2000.

M. Strasser, K. Rothermel, and C. Maihofer. Providing
reliable agents for electronic commerce. In W. Lamers-
dorf and M. Merz, editors, Int. Conference on Trends in
Distributed Systems for Electronic Commerce, number
1402 in LNCS, pages 241–253. Springer Verlag, 1998.

R. van Renesse, K. Birman, and S. Maffeis. Horus: A
flexible group communication syste. CACM, 39(4):76–
83, 1996.

W. Woods. Transition network grammar for natural lan-
guage analysis. Communication of Association of Com-
puting Machinery, 10(13):591–606, 1970.


