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Abstract. In order to make large-scale multi-agent systems reliable, we
propose an adaptive application of replication strategies. Critical agents
are replicated to avoid failures. As criticality of agents may evolve during
the course of computation and problem solving, we need to dynamically
and automatically adapt the number of replicas of agents, in order to
maximize their reliability and availability based on available resources.
We are studying an approach and mechanisms for evaluating the criti-
cality of a given agent (based on application-level semantic information,
e.g. messages intention, and also system-level statistical information, e.g.,
communication load) and for deciding what strategy to apply (e.g., ac-
tive or passive replication) and how to parameterize it (e.g., number of
replicas).

1 Introduction

A multi-agent system is a set of autonomous and interactive entities called agents
[1]. Recent real-life applications (e.g., intensive care monitoring, air traffic control
and process control) are often distributed at large scale and must run continu-
ously without any interruption. As distributed systems, multi-agent systems are
exposed to possibility of failure of their hardware and/or software components.
The failure of one component can often evolve into the failure of the whole
system. To make these large-scale systems reliable, an obvious solution is the
introduction of redundancy: duplication (replication) of the critical components.

Replication mechanisms have been successfully applied to various distributed
applications [10], e.g. data-bases. But in most cases, replication is decided by the
programmer and applied statically, before the application starts. This works fine
because the criticality of components (e.g., main servers) may be well identified
and remains stable during the application session.

Opposite to that, in the case of dynamic and adaptive multi-agent appli-
cations, the criticality of agents may evolve dynamically during the course of
computation. Moreover, the available resources are often limited. Thus, simul-
taneous replication of all the components of a large-scale system is not feasible.
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Our idea is thus to automatically and dynamically apply replication mecha-
nisms where (to which agents) and when it is most needed. In this paper, we
will introduce our approach to this objective and the software architecture to
help at building reliable multi-agent systems.

This paper is organized as follows: Section 2 presents fault tolerance concepts
and replication principles. Section 3 introduces a new approach of dynamic and
adaptive control of replication. Section 4 presents the DarX framework that we
developed to replicate agents. This framework introduces novel features for dy-
namic control of replication. Section 5 describes our approach to compute agent
criticality in order to guide replication. Section 6 describes the implementation
of this solution and our preliminary experiments.

2 Requirements and Techniques for Fault-Tolerance

2.1 A First and Simple Example

We consider the example of a distributed multi-agent system that helps at
scheduling meetings. Each user has a personal assistant agent which manages
his calendar. This agent interacts with:

— the user to receive his meeting requests and the associated information (a
title, a description, possible dates, participants, priority, etc.),
— the other agents of the system to schedule meetings.

If the assistant agent of one important participant (initiator or prime participant)
in a meeting fails (e.g., his machine crashes), this may disorganize the whole
process. As the application is very dynamic - new meeting negotiations start
and complete dynamically and simultaneously - decision for replication should
be done automatically and dynamically.

2.2 Principles of Replication

Replication of data and/or computation is an effective way to achieve fault
tolerance in distributed systems. A replicated software component is defined as
a software component that possesses a representation on two or more hosts [9].
There are two main types of replication protocols:

— active replication, in which all replicas process concurrently all input mes-
sages,

— passive replication, in which only one of the replicas processes all input
messages and periodically transmits its current state to the other replicas in
order to maintain consistency.

Active replication strategies provide fast recovery but lead to a high overhead.
If the degree of replication is n, the n replicas are activated simultaneously to
produce one result.
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Passive replication minimizes processor utilization by activating redundant
replicas only in case of failures. That is: if the active replica is found to be
faulty, a new replica is elected among the set of passive ones and the execution
is restarted from the last saved state. This technique requires less CPU resources
than the active approach but it needs a checkpoint management which remains
expensive in processing time and space.

2.3 Limits of Current Replication Techniques

Many toolkits (e.g., [9] and [19]) include replication facilities to build reliable
applications. However, most of them are not quite suitable for implementing
large-scale, adaptive replication mechanisms. For example, although the strategy
can be modified in the course of the computation, no indication is given as to
which new strategy ought to be applied; moreover, such a change must have
been devised by the application developer before runtime. Besides, as each group
structure is left to be designed by the user, the task of conceiving a large-scale
software appears tremendously complex.

Therefore we designed a specific and novel framework for replication, named
DarX (see details in Section 4), which allows dynamic replication and dynamic
adaptation of the replication policy (e.g., passive to active, changing the num-
ber of replicas). Moreover, DarX has been designed to easily integrate various
agent architectures, and the mechanisms that ensure dependability are kept as
transparent as possible to the application.

3 Towards Dynamic Replication and Adaptive Control

Several solutions have been proposed to replicate distributed systems. These so-
lutions are often used by the designer to replicate the system components before
run time. The number of replicas and the replication strategy are explicitly and
statically defined by the designer before run time. However, these solutions are
not suitable to multi-agent systems. The solution we propose is mainly charac-
terized by dynamic replication and adaptive control.

3.1 Dynamic Replication

The two replication strategies (active and passive) can be used to replicate
agents. Active replication provides a fast recovery delay. So, it is dedicated to
applications with real-time constraints. Moreover, passive replication provides
a low overhead under failure but it does not provide short recovery delays. So,
the choice of the most suitable strategy relies on the environment context. Ac-
tive replication must be chosen when the failure rate becomes too high or when
the application has real-time constraints. Otherwise, passive replication is most
suitable.

In most multi-agent applications, the environment context is very dynamic.
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So, the choice of the replication strategy of each component, which relies on
a part of this environment, must be determined dynamically and adapted to the
environment changes.

Moreover, a multi-agent system component which can be very critical at a
moment can loose its criticality later. If we consider the replication cost which
is very high, the number of replicas of these components must be therefore
dynamically updated.

Thus, the solution we propose allows to dynamically adapt the number of
replicas and the replication strategy. This solution is provided by the framework
DarX (see Section 4).

3.2 Adaptive Control

DarX provides the needed adaptive mechanisms to replicate agents and to modify
the replication strategy. Meanwhile, we cannot always replicate all the agents of
the system because the available resources are usually limited. In the given exam-
ple (Section 2.1), we can consider more than 100 assistant agents and resources
that do not allow to duplicate more than 60 agents. The problem therefore is
to determine the most critical agents and then the needed number of replicas of
these agents.

We distinguish two cases: 1) the agent’s criticality is static and 2) the agent’s
criticality is dynamic. In the first case, multi-agent systems have often static
organization structures, static behaviors of agents, and a small number of agents.
Critical agents can be therefore identified by the designer and can be replicated
by the programmer before run time.

In the second case, multi-agent systems may have dynamic organization
structures, dynamic behaviors of agents, and a large number of agents. So, the
agents criticality cannot be determined before run time. The agent criticality can
be therefore based on these dynamic organizational structures. The problem is
how to determine dynamically these structures to evaluate the agent criticality?

Thus, we propose a new approach for observing the domain agents and eval-
uating dynamically their criticality. This approach is based on two kinds of in-
formation: semantic-level information and system-level information (see Section

5).

4 DarX: A Framework for Dynamic Replication

DarX is a framework to design reliable distributed applications which include a
set of distributed communicating entities (agents). Each agent can be replicated
an unlimited number of times and with different replication strategies (passive
and active). Note that we are working on the integration of other replication
strategies in DarX, including quorum-based strategies [2]. However, this paper
does not address the design of particular strategies, but describes the infras-
tructure that will enable to switch to the most suitable dependability protocol.
The number of replicas may be adapted dynamically. Also, and this is a novel
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feature, the replication strategy is reified such as one may dynamically change
the replication strategy.

4.1 System model

We cousider a distributed system consisting of a finite set of n processes (or
agents) IT = {p1,p2,...,pn} that are spread throughout a network. These pro-
cesses communicate only by sending and receiving messages.

Processes can fail by crashing only, and this crash is permanent. Our algo-
rithm does not need synchronized clocks, but local clocks must not drift with
respect to real time. They must measure time intervals accurately.

We consider the model of partial synchrony proposed by Chandra and Toueg
in [3]. This model stipulates that, for every execution, there are bounds on
process speeds and on message transmission times. However, these bounds are
not known and they hold only after some unknown time.

4.2 DarX Architecture

group 1

RemoteTask

Agent

"I TaskShell

RemoteTask |
Task Supervision '

group 2

m

Fig. 1. DarX application architecture

DarX includes group membership management to dynamically add or remove
replicas. It also provides atomic and ordered multi-cast for the replication groups’
internal communication. Messages between agents, that is communication exter-
nal to the group are also logged by each replica, and sequences of messages can
be re-emitted for recovery purposes. For portability and compatibility issues,
DarX is implemented in Java.
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4.3 Agent Replication

A replication group is an opaque entity underlying every application agent. The
number of replicas and the internal strategy of a specific agent are totally hidden
to the other application agents. Each replication group has exactly one leader
which communicates with the other agents. The leader also checks the liveness
of each replica and is responsible for reliable broadcasting. In case of failure of a
leader, a new one is automatically elected among the set of remaining replicas.

DarX provides global naming. Each agent has a global name which is inde-
pendent of the current location of its replicas. The underlying system allows to
handle the agent’s execution and communication. Each agent is itself wrapped
into a TaskShell (Figure 1), which acts as a replication group manager and is re-
sponsible for delivering received messages to all the members of the replication
group, thus preserving the transparency for the supported application. Input
messages are intercepted by the TaskShell, enabling message caching. Hence all
messages get to be processed in the same order within a replication group.

An agent can communicate with a remote agent, unregarding whether it
is a single agent or a replication group, by using a local proxy implemented
by the RemoteTask interface. Each RemoteTask references a distinct remote
entity considered as its replication group leader. The reliability features are thus
brought to agents by an instance of a DarX server (DarxServer) running on every
location. Each DarxServer implements the required replication services, backed
up by a common global naming/location service.

4.4 Failure of the DarX Server

Assuming that a DARX server will never fail contradicts the very existence of
DARX. Indeed, software fault tolerance becomes useless in a zero-failure context.
Besides, in our solution the fault tolerance protocols are agent-dependent, and
not place-dependent, i.e. the mechanisms built for providing the continuity of
the computation are integrated in the replication groups, and not in the servers.
For every agent there corresponds a replication group: a set of software entities
- replicas - which contains 0 to N followers/backups kept consistent with respect
to a single leader. The consistency protocol as well as the replication group
information are handled by the TaskShell which wraps every replica. A machine
crash - server failure - is handled in three steps within every replication group:

— detection of an eventual failure within the group,

— evaluation of the context: new criticality, leader failure, ...

— recovery: If the missing replica was the group leader, a new one is elected.
In the other case, it depends on the evaluation; a new follower /backup may
or may not be instantiated.

Obviously, if a leader without any follower/backup fails, then it will not be
recovered. This derives from the original assumptions we made: the criticality of
an agent evolves during the computation, and there are phases when an agent
need not be fault-tolerant.
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4.5 Measurements

Our first measurements of DarX are very promising. We evaluated several costs
and made comparisons with other systems (see [14]).

In this paper, we just show the cost of sending a message to a replication
group using the active replication strategy. Figure 2 presents three configurations
with different replication degrees. In the RD-1 configuration, the task is local
and not replicated. In the RD-2 (resp. RD-3) configuration, there is one (resp.
two) replica(s); the leader being on the sending host and the other replica(s)
residing on one (or two) distinct remote host(s).

Measures were obtained using JDK1.1.6 on a set of UltraSparc II 333 MHz
linked by a fast Ethernet (100Mb/s).

Time (ms)

0 t t t
100 200 400 800 1600 3200 6400
Message size (bytes)

Fig. 2. Communication cost as a function of the replication degree

5 Adaptive Control of Replication

We will now detail our approach for dynamically evaluating criticality of each
agent in order to perform dynamic replication where and when best needed.

5.1 Hypothesis and principles

We want some automatic mechanism for generality reasons. But in order to be
efficient, we also need some prior input from the designer of the application.
This designer can choose among several approaches of replication: static and
dynamic.

In the proposed dynamic approach, the agent criticality relies on two kinds
of information:

— System-level information. It will be based on standard measurements (com-
munication load, processing time...). We are currently evaluating their sig-
nificance to measure the activity of an agent.
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— Semantic-level information.

Several aspects may be considered (importance of agents, independence of
agents, importance of messages...). We decided to use the concept of role [16][13],
because it captures the importance of an agent in an organization, and his de-
pendencies to other agents.

Note that our approach is generic and that it is not related to a specific
interaction language or application domain. Also agents can be either reactive
or cognitive. We just suppose that they communicate with some agent commu-
nication language such as ACL [8] and KQML [7].

5.2 Example

The application designer will manually evaluate criticality of the roles, corre-
sponding to their ”importance” in the organization and in the computation.

In the example introduced in section 2.1, we are considering two roles: Ini-
tiator and Participant [7]. Their respective weights will be set by the application
designer to respectively 0.7 and 0.4 (see Table 1).

Table 1. Examples of roles and their weights

Roles Weights
Initiator 0.7
Participant|0.4

5.3 Architecture

In order to track the dynamical adoption of roles by agents, we propose a role
recognition method. Our approach is based on the observation of the agent exe-
cution and their interactions to recognize the roles of each agent and to evaluate
his processing activity. This is used to dynamically compute the criticality of an
agent.

The basic architecture controlling the replication of agents is shown in Figure
4.

In order to collect the data, we associate an observation module to each
DarxServer on each machine (see Section 4.2). This module will collect events
and dara (provided by DarxServer). A monitoring agent (called Mi and Mj in
Figure 3) is then associated to each agent (the leader of replica group). This
monitoring agent realizes the role analysis and activity analysis of the associated
agent by considering his sent and received interaction events, and his system
data. He then uses the obtained roles and degree of activity to compute the
agent criticality.

The next sections describe the role analysis and activity analysis methods
that we propose.
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Fig. 4. General architecture for replication control

5.4 Role Analysis

We consider two cases. In the first case, each agent displays explicitly his roles
or interaction protocols. The roles of each agent are thus easily deduced from his
interaction events. In the second case, agents do not display their roles nor their
interaction protocols. The agent roles are deduced from the interaction events
by the role analysis module.

In this analysis, attention is focused on the precise ordering of interaction
events (exchanged messages). The role module captures and represents the set
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of interaction events resulting from the domain agent interactions (sent and
received messages).

We associate to each agent an entity that analyses the associated interaction
events. This analysis determines the roles of the agent. Figure 5 illustrates the
various steps of this analysis.

Observation

Interaction Events

Pattern Matchi
Role Definiton attern Matching — Roles

Role Recognition

Library

Designer

Fig. 5. Roles recognition

To represent the agent interactions, several methods have been proposed such
as state machines and Petri nets [5]. For our application, state machines provide
a well suitable representation. Each role interaction model is represented by an
augmented transition network (ATN) [20]. A transition represents an interaction
event (sending or receiving a message).

A library of roles definition is used to recognize the active roles. To facilitate
the initialization of this library, we have introduced a role description language.
Each role is represented by a set of interaction events. This language is based
on a set of operators (similar to those proposed in [13], see Table 2), interaction
events and variables.

Interaction events represent the exchanged messages. We distinguish two
kinds of interaction events: ReceiveMessage and SendMessage. The attributes
of the SendMessage and ReceiveMessage interaction events are similar to the
attributes of ACL messages:

— SendMessage(Communicative act, sender, receiver, content, reply-with, ...).
— ReceiveMessage(Communicative act, sender, receiver, content, reply-with,

).

In order to be able to filter various messages, we introduce the ”"wild card”
character ?. For example, in the interaction event ReceiveMessage ("CFP”, " X"
"Y”, ?7), the content is unconstrained. So, this interaction event can match any
other interaction event with the communication act CFP, the sender ”X”, the
receiver "Y” and any content.

In the example of scheduling meetings, the assistant agents use the contract
net protocol [8] (see Figure 6) to schedule a meeting. The interaction model of
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Table 2. Operators

Operators|Interpretation

A.B Separate two consecutive events
A|B Or

A|B Parallel events

(A)* O time or more

(A)+ 1 time or more

(A)n n time or more

[A] Facultative

Call For Proposal (cfp)

refuse

not—understood

propose

accept

} | reject

inform

failure

Fig. 6. Contract net protocol

the initiator role is deduced from the contract net protocol. It is described in
Figure 3.

This description represents the different steps (sent and received messages)
of the Initiator. It can be interpreted as follows [8].

— A call for proposals message is sent to the participants from the initiator
following the FIPA Contract Net protocol.

— The participants reply to the initiator with the proposed meeting times. The

form of this message is either a proposal or a refusal.

The initiator sends accept or reject messages to participants.

— The participants which agree to the proposed meeting inform the initiator
that they have completed the request to schedule a meeting (inform).

Figure 7 and Figure 8 show examples of ATN that represent the interaction
models of the roles Initiator and Participant described below.
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SendMessageEvent("cfp”,Agent,?,2,M1)
ReceiveMessageEvent("propose",?,Agent,?,M2,M1)
ReceiveMessageEvent("refuse",?,Agent,?,M2,M1)
SendMessageEvent("reject”,Agent,?,?,M2,M1)
sendMessageEvent("accept”,Agent,?,?,M2,M1)

ReceiveMessageEvent("failure",?,Agent,?,M2)

R I T R S

ReceiveMessageEvent("inform",?,Agent,?,M2)

Fig. 7. Machine State for the Initiator

ReceiveMessageEvent("cfp",?, Agent2,2,M1)

SendMessageEvent("Propose”, Agent2,?
ReceiveMessageEvent(" Accept”.2, Agent2,2,M2.M1)

ReceiveMessageEvent("Reject”,?, Agent2,2,M2,M1)

L e Y S S VO S

Fig. 8. Machine State for the Participant

Note that in many cases, roles can be deduced before the end of the associ-
ated sequence of interaction events (final state of the associated ATN). In the
scheduling meetings example, the role Initiator may be recognized as soon as
the "CFP” message is received, as it is unique to this role.

5.5 Activity Analysis

In multi-agent systems, the internal activity of agents cannot be observed, be-
cause it is private. The observation is restricted to events. To evaluate the degree
of the agent activity, we use system data that are collected at the system level.
We are considering two kinds of mesures: CPU time and communication load.
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We are currently evaluating the significance of these measures as indicators of
agent activity, to be useful to calculate agent criticality.
For an agent Agent; and a given time interval At, these mesures provide:

— The used time of CPU (cp;),
— The communication load (cl;).

cp; and cl; may be then used to measure the agent degree of activity aw; as
follows:
aw; = (dl *Cpi/At—‘rdg *ClZ/CL)/(dl +d2) (1)

where:

— CL is the global communication load,
— dj and dy are weights introduced by the user.

5.6 Agent Criticality

The analysis of events and mesures (system data and interaction events) provides
two kinds of information: the roles and the degree of activity of each agent. This
information is then processed by the agent’s criticality module. The latter relies
on a table T (an example is given in table 1) that defines the weights of roles.
This table is initialized by the application designer.

The criticality of the agent Agent; which fulfills the roles r;; to riy, is com-
puted as follows:

w; = (a1 * aggregation(T'[r;)]j=1,m) + a2 * aw;)/(al + a2) (2)

Where a1 and as are the weights given to the two kinds of parameters (roles
and degree of activity). They are introduced by the designer.

For each Agent A;, his criticality w; is used to compute the number of his
replicas.

5.7 Replication
An agent is replicated according to:

— w;: his criticality,

— W: the sum of the domain agents’ criticality,

— rm: the minimum number of replicas which is introduced by the designer,

— Rm: the available resources which define the maximum number of possible
simultaneous replicas.

The number of replicas nb; of Agent; can be determined as follows:

nb; = rounded(rm + w; * Rm/W) (3)

The numbers of replicas are then used by DarX to update the number of
replicas of each agent.
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6 Experiments

We made some preliminary experiments using the scenario of agents scheduling
their meetings, as introduced in Section 2.1.

Agents take randomly roles of Initiator, choose Participants for scheduling
meetings or remain inactive (without any role). Several meetings are scheduled
simultaneously. The number of critical agents (which can be either Initiator or
Participant) is 60% of the number of agents.

In order to simulate the presence of faults, we implemented a failure simulator
randomly stopping the thread of an agent (chosen randomly).

Measures were obtained using a set of Pentium IV/2GHz PCs running linux
with JDK1.2 and linked by a fast Ethernet (10Mb/s). We considered 100 agents
which are distributed on 10 machines. We run each experiment 10 mn and we
introduce 100 faults. We repeated several times the experiments with a variable
number of extra resources (number of replicas that can be used).

We consider here the following variables:

NumberO f ExtraReplicats
NumberO f Agents

Replication Rate =

and the rate of simulations which succeeded (i.e., which did not fail):

NumberO f Success ful Simulations
NumberO f Simulations

SuccessRate =

Figure 9 shows the success rate as a function of the replication rate.

100
90
80 |
70
B0 |
50 A
40
30 A
20 A
10 A

rate of simulations which succeded

10 30 50 60 70 100 150 200

replication rate

Fig. 9. Rate of succeeded simulations for each rate replication

From these experiments, we found that the number of extra resources should
be at least equal to the number of critical agents.

Although preliminary, we believe these results are encouraging. Note that
the results are similar for the two replication strategies.
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7 Related Work

Several approaches address the multi-faced problem of fault tolerance in multi-
agent systems. These approaches can be classified in two main categories. A
first category focuses especially on the reliability of an agent within a multi-
agent system. This approach handles the serious problems of communication,
interaction and coordination of agents with the other agents of the system. The
second category addresses the difficulties of making reliable mobile agents which
are more exposed to security problems [17]. This second category is beyond the
scope of this paper.

Within the family of reactive multi-agent systems, some systems offer high
redundancy. A good example is a system based on the metaphor of ant nests.
Unfortunately:

— we cannot design any application in term of such reactive multi-agent sys-
tems. Basically we do not have yet a good methodology. Moreover, these
systems are more suitable for simulations.

— we cannot apply such simple redundancy scheme onto more cognitive multi-
agent systems as this would cause inconsistencies between copies of a single
agent. We need to control its redundancy.

Some work [4] offers dynamic cloning of specific agents in multi-agent sys-
tems. But their motivation is different, the objective is to improve the avail-
ability of an agent if it is too congested. The agents considered seem to have
only functional tasks (with no changing state) and fault-tolerance aspects are
not considered.

S. Hagg introduces sentinels to protect the agents from some undesirable
states [12]. Sentinels represent the control structure of their multi-agent system.
They need to build models of each agent and monitor communications in order
to react to faults. Each sentinel is associated by the designer to one functional-
ity of the multi-agent system. This sentinel handles the different agents which
interact to achieve the functionality. The analysis of his believes on the other
agents enables the sentinel to detect a fault when it occurs. Adding sentinels to
multi-agent systems seems to be a good approach, however the sentinels them-
selves represent failure points for the multi-agent system. Moreover, the problem
solving agents themselves participate in the fault-tolerance process.

A. Fedoruk and R. Deters [6] propose to use proxies to make transparent the
use of agent replication, i.e. enabling the replicas of an agent to act as a same
entity regarding the other agents. The proxy manages the state of the replicas.
All the external and internal communications of the group are redirected to the
proxy. However this increases the workload of the proxy which is a quasi cen-
tral entity. To make it reliable, they propose to build a hierarchy of proxies for
each group of replicas. They point out the specific problems of read/write con-
sistency, resource locking also discussed in [18]. This approach lacks flexibility
and reusability in particular concerning the replication control. The experiments
have been done with FIPA-OS which does not provide any replication mecha-
nism. The replication is therefore realized by the designer before run time.
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In distributed computing, many toolkits include replication facilities to build
reliable application. However, many of products are not enough flexible to imple-
ment an adaptive replication. MetaXa [15] implements in Java active and passive
replication in a flexible way. Authors extended Java with a reactive metalevel
architecture. Like in DarX, the replication is transparent. However, MetaXa re-
lies on a modified Java interpreter. GARF [9] realizes fault-tolerant Smalltalk
machines using active replication. Similar to MetaXa, GARF uses a reflexive ar-
chitecture and provides different replication strategies. But, it does not provide
adaptive mechanism to apply these strategies.

Pre-defined library of replication mechanisms enable more flexibility to be
obtained. The users or the system themselves can tailor their own fault toler-
ance mechanisms to suit their needs by using these replication mechanisms and
updating the strategy to the evolution of their environment. Indeed, the system
must have the ability to observe the agents to determine their criticality and to
replicate them according to this criticality (see Section 5).

8 Conclusion

Large-scale multi-agent systems are often distributed and must run without any
interruption. To make these systems reliable, we proposed a new approach to
evaluate dynamically the criticality of agents. This approach is based on the
concepts of roles and degree of activity. The agent criticality is then used to
replicate agents in order to maximize their reliability and availability based on
available resources.

To validate the proposed approach, we realized a fault-tolerant framework
(DarX) and we used a multi-agent framework (DIMA [11]) to implement multi-
agent systems. The integration of DarX with the multi-agent platform DIMA
provides a generic fault-tolerant multi-agent platform. In order to validate this
fault-tolerant multi-agent platform, two small applications have been developed
(meetings scheduling and crisis management system). They are intended at eval-
uating our model and architecture viability. The obtained results are interesting
and promising. However, more experiments with real-life applications are needed
to validate the proposed approach.
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