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Abstract. Dynamic adaptability of distributed components, nowadays
scarcely supported, should become a basic principle of future middle-
ware platforms. While most related work envisage somewhat large soft-
ware reconfigurations, we explore in this paper fine-grained adaptations
which intervene within component boundaries. Our experiments are con-
ducted in the framework of the Comet middleware. Dynamic adaptabil-
ity is supported in Comet through distributed protocols that can be
applied at runtime. These protocols may locally denote intrusive mod-
ifications which are abstracted through the notion of role. Functional
roles are used to describe all-purpose adaptations. We use hook roles
as wrappers around existing functionalities. Finally, filter roles interfere
with the communication layer. The expressiveness of these complemen-
tary abstractions are illustrated in various examples involving non-trivial
system adaptations for distributed debugging and communication flow
synchronization. A preliminary but promising quantitative evaluation of
our adaptation engine under real-world conditions is proposed. We also
discuss the difficult but crucial issue of verifying such dynamic adapta-
tions in terms of type, access and security contracts.
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1 Introduction

The dynamic adaptability of computer systems —their ability to be modified at
runtime— represents nowadays a prominent research topic [5].

In mainstream middleware platforms such as CORBA or RMI, introducing
a new distributed service (i.e. common service) in a running application repre-
sents a fairly complex process. Some components of the system must be updated
so that they can participate to the new envisaged interactions. To do so, these
components must be stopped as well as all their interacting counterparts. Then,
developers may add the code needed to support the new service. Finally, the
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application must be deployed again. But in many recent systems and most es-
pecially Internet-based applications, a continuous mode of service delivery is
expected from both providers and clients. Put in other words, the components
of such systems cannot be stopped so easily. There are also cases where compo-
nents may not be stopped for safety reasons.

In order to adress these issues, it is our belief that next-generation middle-
ware environments should provide extensive support for dynamic adaptatability.
However, the participation for already deployed components to new distributed
services in a dynamic manner may involve intrusive functional and control-level
changes. This challenges in a fundamental way the well-established middleware
environments. Obviously, these mainstream infrastructures lack abstractions and
mechanisms to support dynamic changes [4].

Researchers mostly investigated dynamic adaptability by means of software
reconfigurations such as component replacements. We adopt in this paper a
complementary point of view by focusing on finer-grained dynamic adaptations.
To explore this direction, we conceived an experimental middleware platform
called Comet [11]. Adaptation requirements are abstracted in Comet through
the notion of protocol. At the operational level, such protocols can be dynami-
cally applied on already-deployed and running components. The problem in this
setting is that the components possess no knowledge about the protocols they
are supposed to participate in. In consequence, we have to (1) allow the sim-
ple and independent description of the implied local adaptations as well as (2)
ensure their consistent and efficient operationalization. We address these require-
ments by abstractions called roles which fall in three complementary categories.
Functional roles support general-purpose adaptations. Hook roles are wrappers
around existing functionalities that can be plugged-in dynamically. Finally, fil-
ter role interfere with the communication layer and support behavioral changes.
Fine-grain dynamic adaptation is obtained through the runtime assignment of
such roles within component boundaries. Kernel-level mechanisms must be pro-
posed in order to verify this profound impact on the system. It is also decisive
to evaluate this impact in terms of performance.

The organization of this paper is as follows. Sect. 2 presents an overview
of the Comet middleware using a distributed multimedia system as an example.
Through this case study, we introduce the important concepts of component and
event, which are ubiquitous in our approach. The fundamental abstractions for
dynamic adaptation, namely the protocols and roles, are then presented in Sect.
3. The foundations of an adaptive service for distributed debugging is presented
as an illustration. We propose in Sect. 4 to evaluate our adaptation engine using a
somewhat more sophisticated protocol for adaptive event flow synchronization.
We then address the difficult but crucial issue of verifying these fine-grained
adaptations in Sect. 5. Finally, we present an overview of related work and then
conclude the discussion.



2 The Comet middleware

2.1 Principles

As for other distributed event-based systems [8], the Comet middleware is based
on the component/event dichotomy. While components perform local computa-
tions, the data they exchange with each other are described by typed events.
The main originality of the approach is to enforce the extraction of the coupling
relation among components using two fundamental principles : structural and
control-level decoupling. By structural decoupling, we mean that components are
transparently localized and may not reference directly other components. The
coupling relation is expressed using typed connections that are established at
runtime. The type information attached to connections completely capture the
routing semantics. While we do not discuss this feature in the present paper, we
show in [12] that this added to the introduction of a proper subtyping relation
results in a powerful type-based multicast communication model. Control-level
decoupling between components relies on asynchronous communications. When
a component emits an event, there is no impact on its local control-flow. As a
consequence of fulfilling these two decoupling principles, it is possible to dynam-
ically change the structure of the applications by adding/removing components
and connections. This represents the proper definition of dynamic adaptability
in Comet.

The original semantics of the Comet middleware are captured by constructs
of the language substrate of the platform, namely Scope. The Scope language
is to Comet what is, for example, Java to RMI : the language layer of the
middleware environment. Scope programs are compiled to standard java source
code®. The basic Scope features are discussed more thoroughly in [12].

2.2 Example: Distributed multimedia

The example described in this section is a simple distributed multimedia appli-
cation. It consists in client components requesting multimedia streams to ded-
icated servers. Despite its simplicity, this example captures interestingly the
client /server semantics expressed in Comet terms.

Components The following definition shows the structure of the multimedia
clients we will deploy:

component MMClient {

receive MMEvent; send MMRequest;

when(MMEvent event) {
// show the multimedia contents
show(event); }

void askServer(MMRequest request) {
// send a server request
send(request); } }

3 Source-to-source Scope compilers are also available for Scheme and Common Lisp.



The receive declaration and the corresponding when construct together de-
fine a reactive block for type MMEvent?. Clients react by showing the contents
of received multimedia events (show method). The askServer method is used
to send a request event to a server. Note that the send primitive does not here
references any explicit destination and as such follows our structural decoupling
principle. In a similar way, we can give definition for servers:

component MMServer { component VideoServer extends MMServer {
receive MMRequest; send MMEvent;| receive MMRequest; send VideoEvent;
when(MMRequest request) { double _frame_rate; // Frame rate field
// subclasses refine this method void doRequest(MMRequest req) {
doRequest(request); ... In a loop for the whole video
} send(req.sender, new VideoEvent(...)
} S

The general structure of a multimedia server is described by the left def-
inition. Events of type MMRequest, when received, denote client requests for
multimedia streams. Operational servers must refine the doRequest method to
generate the corresponding contents. A refinement for video servers is described
partially on the right. Such a server will emit a serie of unicast video frames
to the requesting client®. Of course, there are many details we do not explain
here. Note however the declaration of the _frame_rate field, which represents
as expected the current “speed” of the server; we will refer to this field later on.

Events As explained previously, events represent the data exchanged by com-
ponents at runtime. These are abstracted through the definition of an event
type. For example, we can describe video frames using the following event type
definition:

event VideoEvent is MMEvent {
slot _contents type Deltalmage;
slot _ serial type int;
slot _gentime type long;
VideoEvent(Deltalmage ic, int is, long ig) {
_contents = ic; _serial = is; _gentime = ig;
}
Deltalmage getContents() { return _contents;}
int getSerial() { return _serial; }
long getGenTime() { return _gentime; } }

The type VideoEvent describes differential frames within video streams. In
order to support different categories of multimedia contents, we take advantage
of the subtyping relation among event types. We may for example define subtypes

* Receive/when declarations seems redundant but in fact address different problems:
respectively type negociations among component and reaction semantics. For exam-
ple, one receive declaration might refer to multiple when constructs.

5 Events are of course not multicast from servers to clients. We use the sender slot
of events to identify the request’s origin. Since it is a relative reference, we do not
break the structural decoupling rule.



for sound and voice streams, as well as synchronization events [13]. There also
exists a most-generic event-type called Event which is a supertype of all the
event types.

Instantiation and connection In order to start a distributed application from the
previous definitions, we first have to deploy some client and server components.
This is done using a simple instantiate primitive whose syntax is:

comp = instantiate( ComponentType, location)

Suppose for example that we have deployed two clients (mmclient and
mmclient2 of type MMclient) as well as a video server (vserver of type
VideoServer). We then have to connect dynamically our components altogether.
Analyzing the component type is an important preliminary for connection. This
type is decomposed into an input type (received events) and an output type
(emitted events). To connect the server to the client, we may use the MMRequest
since it is emitted by the client and received by the server. This connection
establishment is performed using the connect primitive as follows®:

connect(mmclient, vserver, MMRequest)

Similarly, we can connect back the server to the client for the video frame
communications:

connect(vserver, mmclient, VideoEvent)

Here, the connection is granted since we used a subtype for connection: clients
can interpret events of type MMEvent denoting more general events than just
video frames. If we connect our two clients this way, we obtain the architecture
depicted on Fig. 1.

2.3 Component internals

The client and server components described in the previous section are in fact
higher-order components. If we look inside each of these components, we reveal
an internal architecture of sub-components. These inner architectures expose
very similar properties if compared to the higher-order ones: explicit coupling
relation and event-based communication. They differ only in the fact that sub-
components are not distributed and can communicate synchronously as well as
asynchronously.

By default, the internal architecture of a component denotes an actor-like
behavior with asynchronous semantics [1]. These semantics are captured by the
sub-components depicted on Fig. 2. For the sake of simplicity, we do not show
the input and output types of the sub-components which is always the most
generic Event type. First, events are received and queued by the Receive and

5 As we explain in [12], we also propose an inference algorithm to determine possible
connection types automatically. Also note that connections are unidirectional, source
and destination components are distinguished.
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Fig. 1. Distributed multimedia architecture

InQueue sub-components. Concurrently’, the InFetch component passes the
queued events to Exec. The latter will deterministically associates the events to
a (most) compatible reactive block (i.e. when construct) for execution. The Send
component then handles the potential event emission requests using the implicit
type-based multicast algorithm introduced previously. At that level, when an
event of type ¢ is sent, a copy of this event is emitted to all destinations com-
patible with type t: itself or some super-type. Of course, other sub-components
can be introduced like the State sub-components which captures the interaction
with the component internal state.

Reactive blocks

Fig. 2. Behavioral sub-components

As we explained in the previous section, the Comet middleware supports
dynamic adaptability by ensuring that distributed components can be added,

" The concurrent or active components which own a thread of control are emphasized
on Fig. 2. The other sub-components use synchronous communications.



removed or interconnected at runtime. By designing the internal architectures
of components as if they were regular architectures, we also support the modi-
fication of the component internals at runtime by means of adding or removing
sub-components. As such, a structural modification at this level will be perceived,
from the outside, as a change in the way the associated distributed component is
behaving. This represents the operational foundation for the fine-grained adap-
tations we will discuss in the remainder of the paper.

3 Dynamic adaptation in Comet

Comet components open their internal architecture to support fine-grained adap-
tations. However, this does not explain how such adaptations are described. In
order to capture these conceptual requirements, we propose abstractions called
protocols and roles.

3.1 Protocols and roles

We write protocol definitions to describe dynamic adaptations of running Comet
applications. Such a definition is composed of roles and functionalities, as well
as of an optional internal state. Functionalities describe the protocol properties
that are shared among the components which will participate in it. These can
be seen as methods or scripts explaining how to use the protocol. In contrast,
roles describe local conventions that each participating component should follow
so that the protocol can be used in practice. As a matter of fact, roles capture
the essence of the protocols. They describe what will effectively change in the
running system when the protocol will be applied. As hinted previously, these
roles correspond to sub-components which will be plugged in dynamically within
distributed component internals.

Example To illustrate these notions, we propose to design a protocol for on-the-
fly inspection of component fields. The definition of this protocol is written as
follows:

protocol Componentinspection {
ComponentRef _inspector; // Internally managed component
Componentlnspection() { // Creation of the internal component
_inspector = instantiate__local(InspectorClient);
}
Object inspect(ComponentRef component, String fieldname) {
assign(component, InspectorRole);
connect(component, _inspector, Ask);
connect(__inspector, component, Answer);
return _inspector.getLocalRef().inspect(fieldname); // Perform the inspection

}}

The inspect functionality is used to remotely read the value of a compo-
nent field. The component we would like to inspect is referenced through the



component parameter and the name of the field to read is fieldname. This pro-
tocol manages an internal state in the form of a component that will act as
a client for the inspection process. We need this component because protocols
themselves are not able to receive events.

The client for inspection is defined as follows:

component InspectorClient {
receive Answer; send Ask;
Object inspect(String varname) {
Answer ans = sendreceive(new Ask(varname));
return ans.getValue(); } }

We use the event type Ask to inspect fields remotely and Answer to denote the
replied value. The protocol can invoke the inspect method of this component
to perform a remote inspection. The use of the sendreceive primitive allows to
send an event and receive a reply in an atomic way®. This simplifies greatly the
description of client-side computations.

The problem here is that Comet components, such as our multimedia clients
and servers, do not support the inspection event types by default. We thus
propose to add the necessary code at runtime; and only on the components we
would like to remotely inspect. This is done by assigning them dynamically a
role for inspection using the assign primitive. But for this we first have to define
the inspector role as follows:

role InspectorRole {
receive Ask; send Answer;
when(Ask ask) {
send(new Answer(outer.getFieldValue(ask.getFieldName()))); } }

As a sub-component, it is not surprising a role looks similar to the definition
of a regular component. However, the operational identity of such role (this, as
usual) cannot be considered independently from the component it is supposed to
be assigned to (referenced as outer). On this example, we define a reactive block
for events of type Ask which carry the name of the component’s field(s) to inspect.
In reply to such requests, the role sends a reply with the value resulting from
the inspection. The standard method getFieldValue of the outer component is
used to locally perform the inspection. Of course, this intrusive invocation must
be precisely controlled. We will discuss this in Sect. 5.

In our terminology, we classify the InspectorRole as a functional role. The
purpose of such a role is to dynamically add new functionalities —or reactive
blocks— to already running components. This represents of course the most
versatile form of dynamic adaptation. We will see other forms of adaptation in
the following section but let us first describe the use of protocols.

To begin with, we have to create an instance of the protocol as follows:

Componentlnspection inspector = new Componentinspection()

8 Because we rely on multicast semantics, the sendreceive primitive supports atomic
distributed rendez-vous. This interesting aspect is discussed in [12].



It is then possible to ask for the inspection of some component’s internal
state such as our previously deployed vserver component:

printIn(inspector.inspect(vserver, ’
==> [float] 29.9673

_frameRate");

Here, the value of the internal field _frameRate is inspected whereas the
inspected component itself has not been tailored at the origin for such fine-grain
access. Fig. 3 shows the resulting architecture after inspection.
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Fig. 3. Dynamic application of the inspection protocol

We can see that an instance of the inspection role has been plugged dy-
namically within the boundary of the inspected —or dynamically adaptated—
component. On Fig. 4, we describe the generic modification involved at the level
of the inner architecture.

Event
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Fig. 4. Functional roles assignments

After the instantiation of the functional role as a sub-component, it is con-
nected from the InFetch sub-component for the type Ask and also to Send so
that events of type Answer can be sent. This is done as follows:



role = instantiate(InspectorRole);
connect(InFetch, role, Ask);
connect(role, Send, Answer);

We can see that only structural changes, triggered by standard primitives,
are used to realize the dynamic adaptation.

3.2 Other Role Categories

In complement to functional roles, we also provide prehook and posthook roles to
allow the wrapping of ezisting functionalities. And we introduce filter roles to be
able to interfere with the communication layer of Comet. We argue that these
three complementary role categories cover a very large spectrum of dynamic
adaptations.

Hook roles Hooks are fine-grained wrappers that can dynamically decorate
functionalities. They can be used for example to implement resource management,
schemes. The way these resources are managed can be modified without touching
their functional usage. Another interesting use of a hook is to reflect at the
global level things that are happening locally within some running component.
To illustrate this, we will develop in this section a protocol for event interception.
The idea is to inform external components (or roles) when events are received
by a given component. This can be used to create replication protocols or, in our
case, to complement our debugging techniques with a transparent trace protocol.

In the example of Sect. 2, the events received by the generic multimedia
servers are of type MMRequest. Suppose that we want to trace such events and
also all types that derive from a more generic Request type used by all server
components. We thus use the latter type for the interception mechanism, defined
as a role:

role InterceptorRole {
prehook Request; send Request;
before (Request request) {
send(request); // Send a copy

}}

Here, we define a prehook (prehook/before reactive block) for events of
type Request. The only operation performed here is simply to send a copy of
the received request to all compatible destinations (i.e. multicast send).

The corresponding fine-grained process for such assignment is depicted on
Fig. 5. The hook roles, as sub-components, are plugged as wrappers around
reactive blocks. This means that unlike with functional roles, the Exec sub-
component will here also get the event and process it as usual. If compared to
Corba interceptors [9], note that changes are here performed within component
boundaries. Hooks may interfere with internal properties such as the compo-
nent’s state.
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Fig. 5. Hook roles assignments

Filter roles Similarly to prehooks, filters denote computations that are done
at event reception time. However, the latter may adjust the delivery semantics
for the so-called filtered events. There exist various delivery semantics such as
instantaneous delivery (no filter), cancellation and so on. The main use of filter
roles, as shown in [12], is to apply content-based filtering protocols to complement
the default type-based routing algorithm of the Comet middleware. However,
one can find many other interesting uses for filter roles. In this section, we will
implement a postponing scheme to support a demand-driven execution mode for
components. A generic filter role for such purpose is presented below:

role StepFilter {
filter Event, Step; // Filter all events and Step
LinkedList _stepList = new LinkedList(10); int _maxStep = 10;

Event filter (Event event) {
__stepList.addFirst(event); // Queue the event
if(__stepList.size()>=_maxStep-1) // Fairness condition
return _steplList.removelast(); // Return the oldest event
else // Step-mode event-flow
return null; // Cancel the current delivery

Event filter (Step s) {
return _ stepList.removelast(); // Replaces by the oldest event

IR

In this example (and once the role has been assigned to some host com-
ponent), every reception of an event (except Step) will be postponed for later
delivery. This is performed using a bounded buffer in which we record the re-
ceived events. To cancel the current delivery, the filter reactive block simply
has to return a null reference. When events of type Step are received, then the
oldest recorded event is processed instead of the step event. While simple, this
algorithm completely changes the behavior of the host component which is not
reactive anymore. The use of a bounded buffer (of size _maxStep) guarantees
that the modification preserves the liveness property of event delivery.

Internally, the role is plugged between the InQueue and InFetch sub-components,
as depicted on Fig. 6.
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3.3 Put it All Together: Dynamic Distributed Debugging

We may now summarize our mechanisms for distributed debugging. This results
in a versatile protocol defined as follows:

protocol DebugProtocol extends ComponentInspection {

void stepMode(ComponentRef comp) { // Step-mode
assign(comp, StepFilter); }

void step(ComponentRef comp) { // Atomic delivery
send(comp, new Step()); }

void reactiveMode(ComponentRef comp) { // Standard reactive mode
unassign(comp, StepFilter); } // Unplug the role

void trace(ComponentRef comp, EventType type) { // Trace mode
assign(comp, InterceptorRole);

connect(comp, _inspector, type); } // Connection to the inherited internal component

void unTrace(ComponentRef comp, EventType type) { // End of trace
disconnect(__inspector, comp, type); // Disconnection
unassign(comp, InterceptorRole); } }

Using this protocol, we can trace the execution of a given component (using
the trace functionality). It is also possible to put this execution in a demand-
driven mode. To do so, we first have to invoke the stepMode functionality. Then,
every time we want to “move”’ one step further in the execution process, we
just have to invoke step. The protocol above also inherits from the previous
ComponentInspection definition. Thus, on-the-fly component inspection is also
available. Of course, all the modifications needed to support the debugging facil-
ities, which may slow down the system, can be undone using the disconnection
(disconnect) and role removal (unassign) primitives.

4 Quantitative Evaluation

In the previous sections, we mainly explored the expressiveness of protocol and
role constructs. We will now argue in a more quantitative way and measure
the impact of their operationalization. To conduct this evaluation, we will use
a protocol whose purpose is to synchronize the flow of events among compo-
nents. Usually, such fine-grained flow synchronization is not needed since most



transport protocols ensure some level of fairness. However, if we want to guaran-
tee client-specific quality of service (such as minimal frame-rate for video), then
user-level synchronization techniques may be required.

Protocol definition The synchronization scheme we propose is based on flow
analysis and regulation mechanisms. For the analysis part, we first define a role
for the detection of event flow glitches (see Fig. 7(a)).

A FlowException

Input Input
— Output ——  Output
\F* events )C* events
Client
(a) Glitch detection (b) Flow regulation

Fig. 7. Protocol for event flow synchronization

Our criterion for flow analysis is the interval between event reception times.
We say that a glitch occurs when the average interval time crosses a given thresh-
old. The Scope definition of this role is given below:

role FlowWatcher {
prehook Event; send FlowException;
long _event count=0; long _avg limit=100; long _avg time=0;
before(Event event) {
__event_count++;
long current = System.currentTimeMillis();
__total _time = _total time + current;
_avg_time = _total time / _event_count;
if(_avg_time > _avg_limit)
send(new FlowException(_avg time));

}}

This definition implements a prehook for all the events (generic Event type)
that are received by the host component. When the hook is performed, the total
number of received events (_event_count variable) is incremented. Then, the
local time is fetched from the operating system and added to the total execution



time recored in _total_time. We can then compute our criterion (average exe-
cution time _avg_time) and test if it crosses the threshold _avg_limit. If so, an
exception (event of type FlowException) is raised by the role. This exception
encapsulates a proposed rate for regulation.

In order to complete the synchronization algorithm, we also need a role for
flow regulation that will take decisions when flow exceptions will be raised (see
Fig. 7(b)). A possible solution is to delay the event emissions from the regulated
host component through the following definition:

role FlowRegulator {
prehook Event; posthook Event;
receive FlowException;
long _start_time; long _end_time; long _rate=1000;
before(Event event) {
_start_time = System.currentTimeMillis();
} after(Event event) {
_end_time = System.currentTimeMillis();
if(_end time- start time < _rate)
Thread.sleep(min_rate - (_end _time - _start_time));

when(FlowException except) {
__rate = except.getRate(); // Detected anomaly

}}

Here, we use another prehook to record the time when a given event has
been received by the host component. Then, a corresponding posthook computes
the execution time for this particular event and sees if a delay is necessary
(comparison to the _rate variable) so that the next event won’t be processed
too early; that is, we perform regulation. When a flow exception is received, the
event rate is updated to meet the client proposition.

A minimal definition for the whole synchronization protocol can be written
as follows:

protocol FlowSyncProtocol {
void sync(ComponentRef server, ComponentRef client) { // Synchronizing
assign(client, FlowWatcher); // Client watching
assign(server, FlowRegulator); // Server regulation
connect(client, server, FlowException); // Protocol connection

}}

The sync functionality applies the synchronization algorithm through the
assignment of the detection and regulation roles to a couple of host components.

Evaluation The graph depicted on Fig. 8 illustrates the impact of such dynamic
adaptation on our multimedia client/server application.

The vertical axis of the graph shows the immediate event handling time on the
client (or detection) side. The darkened curve corresponds to the client that will
be source of glitches. Another “normal” client is measured by the lighter curve.
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Fig. 8. Dynamic adaptation for event flow synchronization

The (1) mark shows a manually triggered glitch before system adaptation®. We
can see that the client becomes suddenly less efficient since it cannot handle
any received video event in less than 60 ms. We can also note that the second
(unmodified) client is taking advantage of the situation (its performance slowly
increases). At mark (2), we perform the converse operation: accelerating the
instrumented client. We can see now that the second client becomes drastically
less efficient. This shows that the event flow between the server and the clients
is not synchronized by default.

The central part of the graph (adapt label) shows the impact of dynami-
cally applying the synchronization protocol on the instrumented client and on
the server. Both the clients are notably affected by this dynamic adaptation.
However, we can see on table 1 that the adaptation duration itself, if observed
from the client-side, is of about 100 ms and so hardly noticeable from the global
point of view. As a matter of fact, this adaptation time is in the same order of
magnitude as the average handling time for atomic events. Table 1 shows also
that the global adaptation time has a rather limited cost (about 18 times less)
if compared to the application deployment time. Mark (3) reproduces the glitch
period triggered on the instrumented client. About 150 ms later (adaptation la-
tency), we notice that the second client, albeit not itself adapted, is slowed down
to obtain an approximatively equivalent shared quality of service. At mark (4),
we try to accelerate our instrumented client but the system now avoids such
anomaly and both clients eventually converge at the best throughput from the
system’s point of view: synchronization is now active.

® We instrumented the role and component code to support the manual generation of
such “deficiency”. In fact, we simply conceived a generic protocol that can be used
to slow down any component.



|Operation |Duration|

Application deployment 9934 ms
Adaptation time (global) 541 ms
Adaptation time (client) 103 ms
Average time for event handling|42 ms

Table 1. Impact of dynamic adaptation

5 Verification contracts

As we can conclude from the preceding discussion, the fine-grained runtime mod-
ifications we support in Comet are highly intrusive and thus potentially harmful
for the system’s integrity. The verification of the dynamic role assignment pro-
cess is in consequence a critical issue. Role/component contracts are established
for verification from three different perspectives: typing, internal access and se-
curity.

5.1 Typing contracts

The first level of verification is built upon the versatile type system of the
scope language. From a formal point of view, we saw previously that compo-
nent types where composed of input/output type pairs. A role type is composed
of such input and output types as well as pre/posthook and filtering types.
A typing contract will then establish the conditions so that a role R of type
(Rin, Routs Rpre, Rpost, Ryiiter) may be assigned to a host component C' of type
(Cin, Cout). What we have to verify is that all the types that are intercepted by
the role are compatible'® with the input types of the host component. In formal
terms, we write:

Vt € Rpre U Rpost U Ryjiter, 3t' € Cip, t' ~ 1t

The establishment of such typing contracts is performed through static anal-
ysis of the role and component source code. It is then generated and transmitted
at assignment time as an XML document. For example, the interceptor role de-
scribed in Sect. 3.2 is associated to the following contract:

<role type="InterceptorRole">
<type>
< prehook>Request< /prehook >
<out>Request< /out>
< /type></role>

This document, when transmitted as a preamble to the role assignment, is
compared to a corresponding host component type contract. In the case of our
multimedia server, this contract is:

10 We define type compatibility between types ¢t and ¢’ through the relation ¢t ~ ¢/, ¢
being a subtype of ¢ (¢t < t') or the converse (¢ = t).



<component type=“MMServer'>
<type><in>MMRequest</in><out>MMEvent</out></type>
< /component>

Intuitively, we see that both definitions match since the intercepted type
is Request which is compatible (as a supertype) with the host input type
MMRequest.

5.2 Access contracts

The contracts we describe in this section firstly establish the modality for sub-
components —most notably the roles— to access the internals of their outer
component. In order to allow or disallow a role from accessing parts of the
host component internal state and methods, we define two complementary con-
tracts. The first one is associated to the role we try to assign. This role contract
must indicate which fields or methods should be accessible. For example, the
InspectorRole described in Sect. 3.1 proposes the following access contract:

<role type="InspectorRole">
<type> <in>InspectReq</in>
<out>InspectRep< /out>< /type>
<access><all-fields mode="read">< /access>
</role>

Here, we request the access to all fields for reading only. In order to satisfy
this request from the host component point of view, we must allow at least access
to some fields. In our example, we will only grant access for _frameRate which
is the one we use for inspection. This is written as follows:

<component type="VideoServer’>
<access><field type="float” name="_frameRate" mode="read">< /access>
</component>

As we can see, the <field> discriminates fields using either their type, their
name or a combination of both. The access mode can be either read, write or
readwrite. It is also possible to access/restrict method invocations and instance
creations. For example, the synchronization protocol of Sect. 4 may only be
plugged in if the sleep method of the standard class Thread is accessible. This
is requested from the flow regulator side as follows:

<role type="FlowRegulator">
<access> <method class="java.lang.Thread” name="sleep” < /access>
</role>

By default, methods are requested/granted either as invoked from the outer
(host component reference) or static contexts. On the host component side, ac-
cess rights are established in the same way. The instance creations are controlled
using the same scheme by considering their constructors as methods.



5.3 Security contracts

We employ low-level security rules when both type and access contracts are not
enough to prevent unexpected runtime modifications. For example, it seems im-
portant to restrict the adaptability features to well-authenticated sources when
potentially unsafe mechanisms are employed. In Sect. 4, the use of the sleep
method is for example a way to slow down a system so that only an authorized
person should be able to plug and control the synchronization protocol. This
can be done through authentication or domain restriction. The latter would for
example be expressed like this:

<component type="“Dummy’>
<access><method class="java.lang.Thread” name="sleep”/>
<domain ip="127.0.0.*"/>< /access>< /component>

Here, we only grant the access rule from domains within a range of IP ad-
dresses. In order to implement these low-level security contracts, we integrally
rely on the Java security API [14].

6 Related work

Several other researchers have addressed the problem of modifying computer
systems at runtime [5]. In the case of middleware environments, studies such as
X-RMI [2] focus on large-grain reconfigurations. This allows existing RMI ap-
plications to be preserved while introducing dynamic reconfiguration features.
Corba interceptors [9] have also been used to support runtime changes in a
portable way. Reflective approaches such as [6] show that more intrusive mod-
ifications can be obtained at the price of deriving from standards (like with
Comet). However, most of these propositions seem to focus on mechanisms for
dynamic adaptation. In contrast, we think that finding abstractions to capture
adaptation requirements should be the priority. The Drastic approach [3] seems
to fit more closely this vision of dynamic adaptability. It proposes a proper fron-
tier between the abstractions for adaptation and the operational mechanisms
that support them. In this work, runtime modifications are abstracted by type
contracts among distributed objects. At the operational level, these contracts are
matched against physical zones that need to be temporarily frozen (using persi-
tency) for update. Meanwhile, every components of the system outside such zones
carry on their computations unaware of the runtime modification in progress.
The main difference in our approach is the much finer granularity level of the
changes we support. We also focus more on minimizing the impact on the system
performances.

The CodA framework [7] once demonstrated that metal-level architectures
could be introduced to circumvent the rigidity of most (distributed) object mod-
els. We took our inspiration from CodA to design the inner architecture of Comet
components. But we (finally) found no need to convey the hardly tractable reflec-
tive concepts since both inner and outer architectures use the same fundamental



concepts. This makes our work diverge from approaches such as [10] where re-
flection plays an essential role. Of course, the implementation of the middleware
itself relies heavily on reflective mechanisms.

Actor-based languages [1] were also an important source of inspiration. The
DIL approach [13], most notably, introduced similar concepts of protocol and
role that we use. However, Comet is an event-based middleware relying on typed
and multicast communications. This diverges in an important way from actor-
based message-passing semantics. We can also note that Comet components
may denote multiple internal activities (depending on the number of active sub-
components) whereas actor-based languages identify the activity and actor con-
cepts.

7 Conclusion

The Comet middleware we designed and implemented supports a development
model which we argue is innovating because it is tailor-made for dynamic adapt-
ability. From a structural point of view, runtime system reconfigurations are
made (1) possible thanks to the extraction of the coupling relations among
components and (2) controllable through strong typing. Relying on the same
principles but within component boundaries, we were able to support dynamic
adaptability at a finer granularity level. This is in our opinion the most objective
contribution described in this paper.

Fine-grained adaptations are manipulated at the language level as role and
protocol abstractions. We think that such domain-specific abstractions fore-
shadow tomorrow’s adaptive middleware environments. The three categories of
role we introduce form in our opinion a quite ezpressive model. Functional roles,
for example, are particularly versatile since they support incremental and dy-
namic functionality enhancements. We saw how prehooks or posthooks could
even change the way a particular functionality is handled. Filter roles go even
further and allow incremental changes in the way events are communicated, us-
ing content-based analysis. Our expressiveness argument represents of course a
more subjective contribution. But we think our example protocols are particu-
larly illustrative in this respect. They denote less than trivial changes in a quite
concise manner.

Moreover, we began to evaluate the cost of such dynamic adaptations which
deeply modify the system semantics. Despite the prototype status of our imple-
mentation, these evaluations reveal promising results. Of course, this evaluation
is relative to the performances of the Comet middleware itself. We are currently
conducting an extensive benchmark to optimize its prototype implementation
so that we may compare to industrial-strength approaches (most notably Java
RMI).

In the mean time, it is very important to keep in mind that the arbitrary
modification of a distributed system at runtime remains a mostly open research
topic. Of course, type-related negotiations, if useful, are not enough to verify such
intrusive changes. We discussed the complementary access and security contracts



as “compensations” here. The security layer seems to be yet the only operational
mechanism at our disposal to envisage the support of dynamic adaptation in
today’s real-world applications. But we find this quite unsatisfactory: more solid
foundations are in our opinion needed to address the problem of safety in the
presence of dynamic adaptations. In this perspective, we currently address the
problem of describing properly the semantics of the language substrate of our
middleware. We hope this would then ease the definition of properties regarding
dynamic adaptations as well as their verification using, for example, theorem-
proving or model checking techniques.
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