
 1

On Object and Database Versioning in
Distributed Environment

Stéphane Gançarski1, Jarogniew Rykowski2 and Waldemar Wieczerzycki2

1 LAMSADE - Université Paris Dauphine
Pl. du Mal de Lattre de Tassigny 75775 PARIS cedex 16
tél: +33 - 1 - 44 05 44 18 fax: +33 - 1 - 44 05 40 91

e-mail : gancarski@lamsade.dauphine.fr

2 EFP - Ecole Franco-Polonaise en Nouvelles Technologies
de l’Information et de la Télécommunication

Mansfelda 4, 60-854 Poznañ, Poland
tel: +48 - 61 - 48 34 06 fax: +48 - 61 - 48 35 82

e-mail : {rykowski, wiecz}@efp.poznan.pl

Abstract

The paper presents how multiversion databases may be efficiently distributed in the case of most
common multiversion applications.

First, the versioning model is described which allows the management of both object versions and
configurations. This model, together with the data structures it uses, allows to manage efficiently as
many versions as needed, and appears to be well suited for being adapted to distributed
environment. Next, different approaches to database distribution are proposed which aim to reduce
useless physical redundancy of object versions and minimize network transmission. These solutions
take into account the nature and needs of applications of different kind. Finally, a study on
implementation issues for each proposed solution is given. In particular, data structures are revisited
to efficiently support the distribution.

Keywords: database distribution, version management

1. Introduction

Version control is an important functionality in a growing number of software applications. Very briefly
speaking, version control is the ability to manage dependencies between subsequent instances of the same
artifact (object), organize them into meaningful structures (e.g. sequences, trees or DAGs) reflecting the way
versions are created (by derivation or merging), and allow such operations as navigation or computation on
them. The most common and relatively easy to understand examples are time-based and author-based
versioning which allow the coexistence, display and comparison of different versions of the same artifact,
even when created at different times and/or by different authors.

Version management has long been recognized as a critical issue for some inherently cooperative
applications like computer aided software engineering (CASE), design (CAD), configuration management,
and authoring [CK86][EC94][KC87][KCB86]. In these areas, the important issue for versioning is to support
opportunistic open-ended design tasks requiring the representation and preservation of historical perspectives
in the design process, the reuse of previous designs, and the exploitation of alternative designs. Flexible
comparing and merging tools support the integration of these alternative designs.

 2

Another promising application of versioning is its use in providing structured but relaxed consistency
control in widely distributed and open collaborative systems. Particularly in large scale environments, where
the long time delays in network communications limit the usefulness of traditional concurrency control
concepts like serializability, versioning provides an alternative mechanism for managing concurrent changes
[CM86].

Intuitively, a multiversion database is a persistent object storing system in which every object may be
potentially represented by practically unlimited number of its versions. In comparison to conventional (i.e.
monoversion) databases, a multiversion database adds a new granule of data storage, namely an object
version, which is somehow embedded in a corresponding multiversion object. Moreover, a new semantic
relationship between versions of the same object is kept in the multiversion database, respectively for every
database object.

There is also another important difference between monoversion and multiversion database which relates
to the problem of finding subsets of database objects that "go together". As it is well known, whenever a
transaction is addressed to the monoversion database, the database is assumed to be in a consistent state, i.e. in
a state that corresponds to one of valid states of the real-world being modeled in the database. Contrarily to
monoversion database, a multiversion database is in general not consistent according to the classical definition
of the consistency. More precisely, considered as a whole, it does not correspond to any valid state of the real-
world. That is why, one must distinguish particular subsets of object versions that are mutually consistent in
order to address to them users' transactions, which are assumed to preserve the consistency of those subsets
after transactions commitment. Relatively to this issue, existing version models may be divided into three
families, according to the granularity of the unit of versioning.

In the first family [AN91], [KS92], [TOC93], a multiversion object is a versioning granule. This implies
that to associate consistent object versions, it is necessary to explicitly link versions: object versions may be
referenced by other versions to build complex object versions. This link is used once as a reference of an
entity to another, and once to associate two mutually consistent entity versions. This duality generates
problems to manage consistent object version sets: creation of object versions implies creation of a new
complex object version, mainly achieved manually or by automatic generation of many, often useless,
complex object versions (percolation [Atw86]). Thus, those works are limited both by the number of complex
object versions managed simultaneously and by the functionalities to manipulate them.

In the second family of version models [KRW92], [EC94], generally devoted to design applications, a
subset of objects, called generic configuration, is a unit of both versioning and consistency. This implies that a
new object version should be created only inside a particular configuration (i.e. a version of a generic
configuration), thus avoiding the problem of explicit linking of mutually consistent object versions. However,
this approach is restrictive, since it usually imposes users to use a top-down design. Moreover, sharing objects
between different generic configurations raise difficulties similar to those appearing in the first family.

Finally, in the third approach, the whole „monoversion” database is a versioning unit. Units of consistency
across versions are thus composed of versions of all the objects in the database, one version per object. This
approach, in some sense, is used for example in temporal databases [Sarda90][TCGJSS93] which represent
different dimensions of time (e.g. validity time, transaction time etc.). If only one dimension of time is
represented, for instance the validity time, the database stores as many states of the real world as there are
different validity states present in the database. However, the total order of versions imposed by the semantics
of time flow induces a strong limitation on applying this approach to other domains, like design applications
(CAD, CASE), where versions are generally organized in a tree or a DAG, instead of a sequence. On the
contrary, in the database version model [CJ90], the organization of versions coming from the derivation is not
limited to a sequential order. This model is very straightforward and natural since it reflects both progressive
and alternative nature of real-world processes being modeled in the database. These two important advantages
have convinced us to use the database version model in the further discussion.

The number of object versions may be arbitrarily big. Thus, in most cases, the size of the entire
multiversion database is much more greater than the size of a conventional database. In configuration
management, where configurations are composed of thousands of objects, each of them existing sometimes in
more than a hundred of versions, the size of the database forbids to store it on a conventional server. In such
situation, the database management system requires usually many more resources (e.g. disks, streamers) than
those available at a single computer site. Thus, the natural requirement is to distribute the database over a
computer network and to use all network resources.

 3

Another important argument for database distribution is that the users of a multiversion database, usually
grouped in teams or classes, tend to access subsets of database objects related to the tasks they perform, rather
than the whole database. For instance, in a CASE application, the development team is working on current
versions of programs while hot-line is dealing with released configurations. Those subsets should be stored as
close as possible (ideally on the same local site) to the respective users, while others may be stored in a
geographically different place, which, however, is accessed via the network.

Object versions, of course, may not be distributed randomly, but in a way that guarantees efficient use of
the database by all users connected to the network. In order to do this properly, one must take into account
two opposite criteria, and try to find a sort of trade-off which satisfies most of the database users. First, the
replication of database objects (object versions) on different computer sites should be avoided, whenever
possible. Physical copies of the same object (object versions) increase the size of the whole distributed
database, they burden the storage buffers and mechanisms, as well as they overload the system to maintain
consistency across copies. Second, one must allow each site to reach all the data it needs using the less
network transmissions as possible. For instance, when one wants to compile a program for testing a piece of
code, he (she) requires not to wait for the system to get through the network all the subprograms, header files
and libraries needed for the compilation.

Those two criteria have different weights depending on the application specificity. For instance, when
objects are read much more often than updated, it might be better to keep copies on each site where they may
be requested, in order to speed up accesses, since the system will not have to keep consistency across copies
very often. However, in most cases, each data stored in the database is related to one particular computer site,
which is usually responsible for it and accesses it much more often than other sites in the network. Taking into
account this natural assumption, it is possible to maximize simultaneously both criteria, by distributing the
multiversion database according to application nature.

In the following, we show how multiversion databases may be efficiently distributed in the case of most
common multiversion applications. The main contribution of the paper comprises the following elements.

• The use of a versioning model which allows the management of both object versions and configurations.
This model, together with the data structures it uses, allows to manage efficiently as many versions as
needed, and appears to be well suited for being adapted to distributed environment.

• Solutions maximizing the criteria given above, i.e. reducing useless physical copies as well as useless
network transmissions. Those solutions take into account the nature and needs of applications of different
kind.

• A study on implementation issues for each proposed solution. In particular, data structures are revisited to
cope with distribution.

It is worth to emphasize that we consider in this paper the term distributed database [OV91][BG92] in its
more general sense, which makes it different from conventional databases, namely that "data are partitioned
and stored at separate computers" [GMH95]. We address the main issues of distributed databases, i.e. data
location and consistency preserving, but do not consider related potential of distributed databases, such as
parallel query processing or improving reliability by data replication. Thus, in the following, we propose
solutions that minimize useless data replication in order to preserve consistency at the lowest cost in terms of
network transmission.

This paper is organized as follows. In Section 2 the database version model is briefly reminded. Section 3
proposes three different approaches for a multiversion database distribution, managed according to the
database version model, in which different granules of distribution are used. In Section 4 the basic
implementation issues, respectively for three different distribution approaches, are considered. Finally,
Section 5 summarizes the paper.

2. Versioning Model

One of the main features of the database version approach (DBV approach), which distinguishes it from
other approaches, is the distinction between the logical level, „what the user sees”, and the physical level,
„what is managed by the system”. In the DBV approach, the classical concept of „version of object” is

 4

separated in two new concepts: a logical version of an object represents the version of this object as it is seen
by users in a given context; a physical version of an object is used by the system to implement logical versions
of this object having the same value.

At the logical level, the multiversion database is seen as a set of database versions, identified by a database
version identifier (dbvid). Each DBV represents a context, a possible state of the modeled world, and for
instance a natural way to store configurations. It is composed of one logical version of each object, identified
by a pair (object identifier, database version identifier). If object o does not exist in DBV d, the value of its
logical version (o,d) is nil. DBVs are created by logical copy, or derivation, from an existing DBV. Thus, at the
creation of the multiversion database, a root DBV is generated. Users always manipulate logical versions of
objects within their context (the DBV they belong to), and a new object version cannot be created outside an
existing DBV. Thus, database versions are both unit of versioning and unit of consistency for object versions.
Two kinds of transaction are defined: transactions that update logical versions of objects, called object
transactions, and transactions that create or delete DBVs, called dbv-transactions.

At the physical level, each multiversion object is composed of a set of its physical versions, identified by
physical version identifiers (pvid), and of a table, called association table, mapping dbvid to pvid. This
mapping allows to retrieve the physical version of an object, and thus the value associated with a given
logical version of this object. When a DBV d_2 is created by logical copy of d_1, d_2 shares all the physical
versions of object with d_1. To avoid the updating of the association table of all the multiversion objects, the
system stores the derivation link between DBVs and uses the following rule:

the physical version associated with a given logical version (o,d) is the physical version associated
either directly with DBV d by (o,d) in the association table of o, or with (o,d') in this table, d' being the
nearest ascendant of d, relatively to the derivation link.

Fig. 1 gives a simplified example of a multiversion database for software development. The object Appl
represents the application to be developed. It is a complex object, composed of programs. The object
main_prg is the main program of the application, the object sort_prg is a sorting program, the object lib is a
library containing sorting routines. The database is composed of six database versions: d1, d2, d3, d4, d5, d6,
plus the root DBV. The derivation tree is shown at the bottom of the figure.

The left side of the figure presents the logical level of the database, i.e. the six database versions with their
content, as they are seen by users (the root DBV is not represented because it is hidden to users). The object lib
does not appear in d1 because the value of its version in DBV d1 is nil. As logical versions of the object Appl
are versions of a complex object (i.e. they refer to other versions of objects), they are represented by frames,
where the referred versions of objects are embedded. Logical versions of other objects are versions of simple
objects, they do not refer to any version of object.

The right side of the figure presents the physical level of the database: the association table of each object
and the derivation links between pairs of DBVs. For example, the physical version s_v1 of object sort_prg,
which uses an heapsort algorithm, is associated with DBVs d2 and d6: the logical versions (sort_prg, d2) and
(sort_prg, d6) are both associated with the physical version s_v1 (i.e. they both use a heapsort). d5, derived
from d2, does not appear in the association table of sort_prg: the logical version (sort_prg, d5) shares the
physical version s_v1 of sort_prg with (sort_prg, d2). Notice that the value of versions of complex object
Appl contains object identifiers and not identifiers of versions of objects. For a logical version of Appl in a
given DBV d, these object identifiers refer to the logical version of the specified objects in DBV d. For
instance, as the value of (Appl,d6) contains the object identifiers main.prg and sort.prg, (Appl,d6) refers to the
logical versions (main.prg, d6) and (sort.prg,d6). This implies that updating a component of a logical version
of complex object does not affect the value of the other logical versions of this complex object, even if it is
shared by some of them. In Fig. 1, (Appl,d6) and (Appl,d4) share the same version of component main_prg. If
someone updates the main program of the application in DBV d6, a new physical version m_v5 of the object
main will be created and associated with d6. However, as for object Appl, d4 remains associated with a value
containing m_v4, (Appl,d4) still refers to the same version of the main program.

d1

main_prg

Appl

d2

main_prg sort_prg

Appl

heapsort

lib
d3

main_prg sort_prg

Appl

quicksort

lib

d5

main_prg sort_prg

Appl

heapsort

lib
d4

main_prg sort_prg

Appl

quicksort

lib

d6

main_prg sort_prg

Appl

heapsort

lib

Logical level: 6 database versions and their content Physical level
multiversion objects and their association tables

main_prg
pvid dbvid

m_v0

m_v1

m_v2

m_v3

m_v4

root

d1

d2

d5

d6

sort_prg
pvid dbvid

s_v0

s_v1

s_v2

root

d2, d6

d3

lib
pvid dbvid

l_v0

l_v1

l_v2

root

d2

d3

Appl
pvid dbvid

A_v0

A_v1

A_v2

root

d1

d2

physical versions of objects
m_v0 m_v1 m_v2

m_v3 m_v4
heapsortquicksort

s_v0

s_v2 s_v1

l_v0 l_v1

l_v2

A_v0 A_v1

A_v2

main_prg

main_prg sort_prg

derivation links between DBVs

root d1 d2 d5

d3 d4 d6

Figure 1. Logical and physical levels of multiversion database

Obviously, distributing a multiversion database, which is managed according to the DBV approach, must
take into account the physical level of storing the multiversion data: physical object versions, association
tables and the database version derivation tree. These data structures have to be organized and stored in such a
way that object versions are efficiently available on any site they may be requested. Thus, the most important
issue is to distribute object versions efficiently, according to applications needs. In such case association
tables and derivation tree should be adapted to support distributed access to object versions. These two points
are studied in details in the next two sections.

3. Granules of Distribution

Objects and data structures supporting database management may be distributed in the network in many
ways. Some of them may be stored as a single copy kept on a particular network site, while other may be
replicated many times and stored simultaneously on different sites. The way objects are distributed
substantially impacts the efficiency of the distributed database.

In the three following subsections we propose three different approaches to object version distribution in
the database managed according to the model presented in Section 2. These approaches differ by the
elementary granule of distribution and are addressed to different areas of database application. Depending on
the specificity of application, in particular, depending on the average number of versions of the same object
accessed by the user, one of them might be more efficient and thus recommended, while the others - less
efficient.

3.1. Horizontal Distribution

As it was mentioned (cf. Section 2), in the database version model a single database version is a unit of
both versioning and consistency. Thus, the most natural and straightforward approach to object distribution is
to treat a database version also as an elementary unit of distribution. This approach might become very useful
in the case of applications in which the user tends to access exclusively his (her) private database version or a

 5

set of private database versions, rather than public database versions, shared simultaneously by many users.
Moreover, the user accesses most of objects stored in the database version addressed rather than a small subset
only. This is very typical to CASE databases, when users work on parts of code assigned to them mostly
separately, until they are ready for final code linking in a public database version. Even if a particular user
works only on procedures (modules) assigned to him (her), he (she) still requires procedures being developed
by other members of a team as well, or at least their signatures, in order to compile his (her) code and to test it.
Versions of procedures developed by other users need not be the most recent at these stages of software
development. It is because the user tests (debugs) the software only partially, putting a particular emphasis on
going through all possible tracks in his (her) part of code, rather than in the whole program.

In situations like those mentioned above, database versions accessed by a single user should be entirely
stored on his (her) computer site, in order to avoid object version transmission via the network. As a
consequence, when a particular object is addressed in a user’s database version, all other object versions,
possibly bound to it by different semantic relationships, are also immediately available, because they belong
to the same database version. It is illustrated in Fig. 2: the horizontal axis represents multiversion objects
stored in the database, while the vertical axis represent database versions. Two database versions are stored on
site S1, one on site S2 and two on site S3. According to the database version model, a single version of every
object kept in the database is available in every database version, in particular case - nil version.

multiversion
objects

database
versions

O1 O2 O3 ... Om

dbv_1

dbv_2

dbv_3

dbv_4

dbv_5

S1

S2

S3

Figure 2. Horizontal distribution

Before discussing the advantages of the proposed approach to object version distribution, we give some
observations concerning relationships among database versions stored on the same computer site, on one
hand, and those stored on different sites, on the other hand.

Typically, the number of database versions in the multiversion database is much more greater than the
number of computer sites, which means that in general on every computer site n database versions are stored.
Moreover, database versions stored on the same site are typically directly bound by the derivation
relationship, because they are operated by the same user. In other words, database versions stored on the same
site typically belong to the same subtree of the derivation hierarchy. It is illustrated in Fig. 3. The
correspondence between database versions and computer sites given in Fig. 3a is much more typical and
probable than that in Fig. 3b.

Another observation concerns sharing of object versions between database versions. Typically the highest
level of sharing appears between database versions directly bound by the derivation relationship, i.e. parent
and child database versions, due to the nature of dbv-transactions. Transitively, there is usually also a
relatively high level of object sharing between database versions indirectly bound by the derivation
relationship, i.e. between database versions belonging to the same subtree of the derivation hierarchy. On the
contrary, database versions included in different subtrees, e.g. subtrees stored on sites S1 and S3 in Fig. 3a, do
not share object versions (except of nil version), or the sharing is very rare. As a consequence, in the approach
proposed, object versions are mostly shared among database versions stored on the same computer site, while
sharing between different sites is incidental.

 6

S1 S2 S3

S4

S1

a) b)

Figure 3. Correspondence between database versions and computer sites

As it is known (cf. Section 2), database versions are logically independent. Thus, an object version that
appears simultaneously in two database versions stored on the same site is logically replicated, however
physically there is no redundancy, and only one copy of shared object version is kept on the corresponding
computer site. On the contrary, an object version that appears in two database versions stored on different
computer sites is replicated both logically and physically. In other words, every site has its own physical copy
of that object version. Those copies are independent, i.e. updating one of them does not impact the value of
the second one. Due to the previous discussion, this replication does not substantially increase the level of
redundancy in the distributed environment, providing that the assignment of database versions to computer
sites corresponds to the one given in Fig. 3a.

The evident advantage of the proposed distribution technique is that every time the user addresses his (her)
database versions, i.e. one of those stored on his (her) computer site, there is no need for network
transmission, no matter if a given object is local or appears simultaneously in many database versions. In other
words, every read, create or update operation may be performed immediately because a proper object version
is always stored on the computer site the user is accessing. Notice, that even if the assignment of database
versions to computer sites resembles the one presented in Fig. 3b, rather than in Fig. 3a, this feature is also
preserved. In this case, however, the level of redundancy due to object version replication might be
substantially higher.

Up till now, we have assumed that the user addresses a database version that is assigned to his (her)
computer site. What will happen, however, if, for some reasons, he (she) decides to access a database version
that is stored on a remote computer site? If the access request is incidental then an object version addressed
may be transmitted over the network. Otherwise, i.e. if the user plans to access a particular remote database
version more regularly, the following steps are performed.

First a new database version is created from scratch, i.e. a database version composed of nil object versions
only, which in the global derivation hierarchy becomes a next child of a parent node of the subtree assigned to
the computer site accessed by the user (or a selected subtree, if more than one subtrees are assigned). Next, the
remote database version is entirely copied via the network to the one newly created, i.e. all not nil object
versions belonging to the remote database version are physically replicated. This operation may cause some
trouble due to object version transmission, proportionally to the number of objects existing in the remote
database version. To avoid it so called lazy replication technique is applied, which is particularly beneficial if
the user accesses only a subset of objects from the remote database version, and deletes the database version at
the end of his (her) session.

The lazy replication technique consists in keeping in the database a particular link between local and
remote database versions and delaying object version replication until they are explicitly addressed by the
user. Because the remote database version may not be frozen, i.e. it may continue to evolve independently
from the local database version, the link in fact is established between the local database version an a shadow
database version of the remote one (both of them are stored on the same site). The shadow database is a sort
of consistent snapshot made at the time user requested an access to the remote database version. The shadow
database version is stored in the system until last not nil object version is replicated, or the local database
version linked to it is deleted by the user.

 7

3.2. Vertical Distribution

Another approach to object distribution is to treat a multiversion object as an elementary unit of
distribution. This approach can be useful in a case of applications in which the user usually works with a small
subset of objects from the database, and the versions of these objects are not shared with other users. This is a
typical case of CAD databases in which, at early stages of the design process, users work independently on
parts of the whole design artifact, assigned to them by the head of a design team. After many go-ahead and
roll-back steps each of them prepares a version of the part he (she) is responsible, which is ripe enough to be
released and shown to other users. Finally, in case of common acceptation, all parts are merged together in
order to produce the artifact being an output of the design process.

In a situation like the one mentioned above, all versions of one multiversion object, created by a particular
user, must be kept at one place, on his (her)computer site. It is illustrated in Fig. 4: the horizontal axis
represents multiversion objects stored in the database, while the vertical axis represents database versions.
Three multiversion objects are stored on site S1, one on site S2 and two on site S3.

multiversion
objects

database
versions

O1 O2 O3 ... Om

dbv_1

dbv_2

dbv_3

dbv_4

dbv_5

S1 S2 S3

Figure 4. Vertical distribution

Now we discuss some observations concerning relationships among multiversion objects stored on the
same computer site and on different sites.

Typically the number of multiversion objects stored in the multiversion database is much more greater than
the number of computer sites, which means that in general on every computer site all versions of n
multiversion objects are stored. Moreover, multiversion objects stored on the same site are typically directly
bound by various semantic relationships, with the composition relationship being the most important one. It is
worth to note that multiversion objects stored on the same site typically belong to the same subtree of the
composition hierarchy. It is illustrated in Fig. 5. The correspondence between multiversion objects and
computer sites given in Fig. 5a is much more typical and probable than that in Fig. 5b. This correspondence
must be stored in a separate data structure, mapping object identifiers to computer site identifiers, in order to
maintain well-known „data location transparency”.

Another observation concerns physical sharing of object versions between database versions. Taking into
account the fact that all the versions of a multiversion object are stored on the same site, we may say that the
original advantage of physical sharing of value-equal versions (cf. Section 2) is preserved.

Up till now we have assumed that the user addresses multiversion objects which are assigned to his (her)
computer site. If, however, he (she) has to access a version of a multiversion object that is stored on a remote
computer site, two approaches can be used.

In the first approach, we assume that a user is not interested in keeping the consistency between local and
remote copies of a multiversion object. For example, he (she) makes a „snapshot” of a remote object and does
not care about its future evolution. This is typical to CAD and CASE systems, where some remote objects are
read to perform a test, or to check the (local) integrity constraints. After test execution, the user does not need
the objects anymore or at least until next test execution. To make a physical copy of a remote object, the user
first creates a new local multiversion object from scratch, containing nil version only. Next, the given

 8

multiversion object is copied from the remote site, i.e. all not nil object versions of the remote object are
physically replicated. This operation may be very long, so to speed it up the lazy replication technique can be
applied, in a way explained in Section 3.1.

a) b)

composition hierarchy

 9

S1
S3

S2
S1

S3S2

Figure 5. Correspondence between multiversion objects and computer sites

If the user is interested in keeping consistency between local and remote copies of the same object, he (she)
may use a second approach, in which every update of a remote object copy is (immediately or in a lazy way)
propagated to the local copy.

3.3. Mixed Distribution

As they are presented in the two previous subsections, horizontal and vertical approaches have different
features. In the first case, object version replication and network transmission are avoided thanks to the
particular semantics of dbv-transactions, assuming that database versions belonging to one site are bound by
the derivation relationship. It is there well suited for applications where one user mostly access his (her) own
database version but need to have a snapshot of almost every object. In the second case, the same result is
obtained assuming that a given site is devoted to only some objects, but in all of their versions. This implies
that two different sites may work concurrently on the same DBV, without too many remote access.

In some cases, these two features have to be both provided. Some sites are devoted to only some versions
of some objects. This is typically the case of Configuration Management, when complex systems are
developed, released, installed and maintained. Those complex systems are usually composed of both software
and hardware, each of them being divided into a common part (e.g. operating system, basic resources), a
country-related part (e.g. user interface messages, devices voltage) and a client-specific part (e.g. programs
computing salaries according to client policy). Due to the complexity of the task, work is performed by
different teams, working on different sites in different countries. For instance, one site in UK may be devoted
to maintain versions of common hardware components, another site in France for the french and belgium
versions of user interface, and so on.

In such application, it appears that neither whole database versions nor whole multiversion objects have to
be fully stored on a given site. Actually, the elementary granule of distribution here is the single object
version. In the general case, one may think about distributing object versions randomly, as it is suggested in
Fig. 5: each site is assigned with a non structured set of object versions. From user point of view, this might be
well suited, since he (she) can choose his (hers) own object versions without any restriction.

multiversion
objects

database
versions

O1 O2 O3 ... Om

dbv_1

dbv_2

dbv_3

dbv_4

dbv_5

S1

S2

S3S1 S2

S2

S3

S3

Figure 5. Random Mixed distribution

However, in this case, it is not possible to systematically avoid useless data replications or network
transmissions. More precisely, since no assumption may be done on the database versions and on the object
located in a given site, it is not possible to adapt vertical and horizontal solutions described before in a
straightforward way. Thus, a more restricted but more realistic approach is the following, so called bounded
mixed distribution. In the bounded mixed approach, each site is assigned some objects O1, O2,..Oi and some
database versions dbv_1,..dbv_j, and is therefore assigned all the corresponding object versions, namely
(O1,dbv_1), (O1,dbv_2) ... (Oi,dbv_j). In other words, a site is always represented in the two-dimension
diagram, by a full rectangle, as it is represented on Fig. 6.

multiversion
objects

database
versions

O1 O2 O3 ... Om

dbv_1

dbv_2

dbv_3

dbv_4

dbv_5

S1

S4

S2

S3

Figure 6. Bounded Mixed distribution

The main advantage of this solution is that it generalizes the two former. Since the granules of distribution
may be chosen in a more flexible way, the trade off between object version replication and network
transmission may be more efficiently found. Moreover, horizontal distribution and vertical distribution
techniques may both be used, since here we may easily assume that [1] dbv_1,..dbv_j are included in a subtree
of the derivation tree, and that [2] O1, O2,..Oi are semantically related objects. Then, we may assume that
access to remote sites will occur very rarely, and that sharing of object versions occurs within sites much
more than between sites.

Now consider the situation of remote accesses. Again, if an access is incidental, a message is send to the
remote site and addressed object versions are transmitted over the network. For regular remote access, the
situation is a little bit more complicated and requires to adapt previous solutions. Indeed, in order to allow
regular access to remote sites, lazy replication must here be applied to „version rectangles”, not to whole
database versions nor to whole objects. Version rectangles are composed of a set of rows or by a set of
columns located in the same site on the 2-D diagram. Assume for instance that a user working on site S1
decides to regularly access to versions of O1, O2, O3 in database versions dbv_3. Then, the corresponding
rectangle must be replicated in site S1. In order to perform it in a lazy way, a consistent snapshot of the

 10

 11

rectangle has to stored in the remote site until last not nil object version it contains is effectively replicated. To
perform this, one shadow database version and three shadow objects have to be created for the purpose of
accessing only three object versions. This implies that the database might be soon crowded by shadow
structures, however, as it is mentioned above, this situation is assume to occur very rarely.

Notice that, according to Fig. 5, another retriction may be put over mixed distribution, so called fixed
object clustering. This means that, whenever a set of object is bound in a given site, no other set of object can
overlap with it in another site. In the 2-D diagram, this means that sites are forming vertical layers of fixed
size. This restriction simplify implementation as it will be discussed in Section 4.3. Moreover, objects are
clustered according to composition links. In many cases, composition hierarchy is not evolving across
versions, making fixed object clustering not too restrictive solution.

4. Implementation Issues

In this section we briefly discuss some implementation issues related to the distribution of object versions
in the network, respectively for the three approaches (and the three different distribution granules) proposed in
Section 3. The main contribution, however, concerns the implementation of the horizontal distribution (cf.
Section 3.1). In case of two other approaches: the vertical and the mixed distribution, we show only the
necessary modifications of the horizontal distribution implementation technique. An emphasis is put on the
management of two main data structures, namely the database version tree and the association tables (cf.
Section 2) in a distributed environment. Also, additional data structures, necessary to support an access to
object versions stored in remote computer sites, are briefly mentioned.

4.1. Horizontal Distribution

Association tables may become very large due to practically unlimited number of object versions. They are
also frequently updated as a consequence of updates of objects in different database versions. In general,
association tables may be managed in two different ways. If versions of the same object tend to be grouped on
one computer site and do not occur on other computer sites or occur rarely, then the computer site holding the
majority of versions should also store the corresponding association table. The identifiers of object versions
stored in different computer sites, which are included in association tables, must also be extended by
computer site identifiers. In order to find the location of an association table stored out of a given computer
site, the site must be also provided with an additional data structure mapping multiversion object identifiers
into computer site identifiers.

Most accesses to an association table are related to operations on object versions stored on the same
computer site as the corresponding association table. In this case, there is no overhead impacted by object
distribution, i.e. all operations may be performed in the same way they are performed in the centralized
environment. If, however, the required association table, or the requested object version, or both the
association table and the object version are stored on different sites than the one accessed by the user, then
exchange of messages among computer sites is necessary, i.e. the network has to be used. The site storing an
association table is responsible for sending object version identifiers to other sites or updating the association
table according to remote requests. The same concerns the site storing the addressed object version which
must be transmitted to the respective remote site, and locked in the host site in a way avoiding access
conflicts, until a corresponding remote transaction commits.

If versions of the same object are not grouped but distributed in the whole network, then the approach
proposed above is not recommended. In such situation, instead of centralized association tables, distributed
association tables should be used. If versions of a particular object are stored on n computer sites, then the
association table should be divided into n parts, each one holding the rows describing object versions stored
on the same computer site, and stored together with them (i.e. on the same site). Now, if the user accesses
database version stored on his (her) computer site, no matter which object he (she) addresses, there is no need
for network transmission: both a required part of an association table and object versions it refers are stored on
the same site.

The above protocol becomes more complicated if the user accesses a remote database version, in which
case a particular message exchange protocol must be applied, i.e. the network must be used. In case of many

 12

accesses to a remote database version, to avoid data transmission, it is suggested to derive a new database
version stored at the computer the user accesses and to link it with a remote one, as explained in Section 3.1.

The database version derivation tree is a data structure that does not require too much memory to be
allocated, i.e. it may be easily encoded on few disk pages. It is also mostly read and updated only in case of
dbv-transactions deriving new database versions. For this two reasons, it is replicated on every computer site
of the distributed environment, and thus available immediately whenever required. In case of updates, the
computer site that introduces them is responsible for informing all other computer sites and sending the
updated derivation tree to all other sites.

However, if the information about the derivation of all the database versions does not need to be known on
all the sites, it is not reasonable to store database version derivation tree on a given site and to distribute it
across the network. This tree should be rather distributed, according to the distribution of the database
versions.

One may notice that all database versions are created either in a „shadow” way or as children of local
database versions. The second case is rather obvious and does not require any further discussion. In the first
case, a particular continuos link between a local database version and a corresponding remote database version
may be created. Now, from the implementation point of view, it is sufficient to distinguish between local
version stamps (beginning with „0”) and remote version stamps, beginning with an identifier of a remote site
(different than „0”), and further containing the identifier of the remote database version (i.e. its version stamp,
as viewed from the remote site). It is illustrated in Fig. 7. First (Fig. 7a), the database version derivation tree
before its distribution is presented. Two computer sites S1 and S2 are considered, each of them storing several
database versions and respective versions of the multiversion object A. Next (Fig. 7b), the derivation tree is
devided into two independent derivation trees, stored on sites S1 and S2, respectively. The root database
version is added to the derivation tree of site S1, to represent „empty” local objects (it is not reasonable to
share „empty” objects across the network). One may say, that this newly created „root” database version is a
copy of a „root” database version taken from site S2. This is, however, only a logical copy, because nil
versions it contains need not be copied between sites. The version stamps are renumerated, according to the
structure of the local derivation trees. At the same time, a special track is kept between „shadow” local and
remote database versions. This is achieved by changing version stamps held in association tables, as illustrated
in Fig. 7c and 7d. For example, version a3 on site S1 is taken from remote site S2, from database version 0.1.1
(version stamp S1.0.1.1).

It is worth to notice, that the above idea may also be used to implement lazy replication technique: first
reference to a remote version stamp in the association table forces getting a physical version from the remote
site, and changing the version stamp in the association table to a local one. It is illustrated on Fig. 8.

4.2 Adaptation to Vertical and Mixed Distribution

Solutions for horizontal distribution proposed above may be adapted in a quite straightforward way to
vertical distribution. Due to the fact that all versions of a multiversion object are stored on one site, association
tables are also stored locally. To access remote multiversion objects, their association tables must be
physically or logically copied to the local site. To do this, a similar technique to the one described in Section
4.1 may be used, which consists in getting shadow versions in a lazy way, and changing version stamps from
„remote” to „local” ones. Mapping between multiversion objects identifiers and computer site identifiers must
be, however, in this case extended. Indeed, as object stored on the same site are assumed to be semantically
related (e.g. by composition), it is possible to adapt object clustering techniques [Cha93] to directly map
object clusters to sites. As database versions are not stored as a whole on computer sites, distributing the
database version tree, as it is shown in Section 4.1, is not possible. This tree has to be encoded and fully
replicated in each computer site, and changes have to be propagated anytime a dbv-transaction is performed.

S1
S2

shadow

shadow

0

0.1 0.2

0.2.1 0.2.2

0.2.1.1

0.1.1

S1

S2

0

0.1

0.1

0.1.1 0.1.2

0.2

0.1.1

0

shadow S1.0.1.1

 a) b)

A version stamps A on S2 version stamps

a0=nil 0 a0=nil 0

a1 0.1 a2 0.1

a2 0.2 a3 0.1.1

a3 0.2.1

 A on S1 version stamps

 a0=nil 0

 a1 0.1

 a3 S2.0.1.1
 c) d)

Figure 7. Distributing database version derivation tree
a) centralized version derivation tree
b) distributed version derivation tree

c) centralized association table of object A
d) distributed association table of object A

A on S1 version stamps A on S2 version stamps

a0=nil 0 a0=nil 0

a2 0.1 a1 0.1

a3 0.1.1 a3 0.2

Figure 8. Association tables of object A after first reading of the version a3 on site S2

As mentioned in Section 3.3, mixed distribution consists in allowing both vertical and horizontal
distribution. As a counterpart to this gain in flexibility, implementing this approach requires to integrate both
techniques of vertical distribution and techniques of horizontal distribution. Association tables may be
centralized or distributed. This depends on the way of mixing vertical and horizontal approach. If computer
sites are assigned much more objects than database versions, i.e. the corresponding rectangle is much more
wide than high, association tables should be distributed. Indeed, in this case, versions of a given object are, on
average, distributed on many sites. On the contrary, if sites are assigned few objects but in many versions,
centralizing association tables and exchanging messages for object version read/write is better suited.

 13

 14

Mixed distribution raise the particular issue of « object version location transparency ». Actually, objects
are distributed on different sites, depending on which version. In case of remote access to a given object
version, the local site must hold a map in order to determine which remote site is responsible for this object
version. The data structure used for object location evoked above is no more sufficient, since one has to locate
no more objects but object versions. However, it may be extended in a very straightforward way, due to the
restriction described in Section 3.3., so called fixed object clustering. Indeed, it is the sufficient to add, for
each object clusters, the list of computer sites where object belonging to the cluster have some versions.

5. Conclusions

This paper presents three different ways of distributing a multiversion database managed according to the
database version model (Section 2) on the sites of a computer network. Depending on application needs, the
granule used for distribution is one of the following: a single database version (horizontal approach), a
multiversion object (vertical approach), an object version (mixed approach). Each solution is described at the
application level (Section 3), as well as at the system level (Section 4), where extensions to the basic data
structures and algorithms which support the database version model are presented.

This latest point proves the usefulness of the database version model which can be distributed in a
straightforward way, without loosing any mechanism, and without substantial implementation problems. It is a
consequence of one major characteristic of the database version model, namely that version management is
implemented below object management. On the contrary, in most other version models in which version
management is built on the top of object manager, the object version distribution is more complicated, since it
is dependent on object distribution. Moreover, as explicit links are usually used to associate consistent object
versions, horizontal distribution is very difficult, since it requires to replicate every shared component object
version together with those links, and then causes tiresome work to maintain consistency across copies after
each update. Thus, only vertical distribution is possible. Also, as versions of complex objects are physically
bound to their components, lazy replication would be more complicated to manage.

The main advantages of the proposed approach are: adequation, flexibility and efficiency. The approach is
adequate to the specificity of cooperative work in a distributed environment. The way multiversion database is
distributed reflects the way people are working together, preserving independent (stand-alone) work when
needed, as well as concurrency when results have to be gathered.

The second advantage is flexibility: depending on the application domain one of three proposed
distribution models may be applied. As the mixed distribution generalizes both horizontal and vertical
approach, it is possible to cover a wide range of application domains. Moreover, because the database version
model is orthogonal to object model (i.e. it does not require any specific object-oriented features, except
object identification, to be implemented), our solution can be adapted to any data model.

Efficiency, the third advantage, results from ad hoc data structures and algorithms: network transmission
and data replication are minimized by distributing data, so that remote accesses occur rarely and do not require
immediate transfers of huge amounts of data.

The usefulness of the proposed distribution techniques are going to be verified very soon in the
Multiversion Object Manager (MOM), which is a prototype of the database modeled and managed according
to the database version approach. Its recent version works in a restricted client-server architecture. A client
station supports user applications only, while all data structures are centrally stored on the server, which is
of course to be extended by the ideas proposed in this paper.

Further extensions will be given to the presented solutions. They mainly concern the integration of a
database schema (e.g. object-oriented schema) with the distribution policy. First, composition and inheritance
relationships between classes will be used to deduced sets of semantically related object versions that should
be located on the same site. The issue is similar to object clustering and distributing in conventional
monoversion object oriented databases. However, it is more complex since, as it is shown in [CJK91], the
database version approach could be extended to maintain consistency between versions of classes and versions
of objects. Second, the database schema itself must be distributed, including methods and possible integrity
constraints. Again, if the schema itself is versioned, monoversion solution cannot be adapted in a
straightforward way.

 15

References

[AN91] R. Ahmed and S.B. Navathe, Version Management of Composite Objects in CAD Databases, Proc.
SIGMOD, pp. 218-227, Denver, Colorado, June 1991.

[Atw86] T. M. Atwood, An object-oriented DBMS for design support applications, Proc. COMPINT, pp. 299-
307, Montréal, Canada, September 1986.

[BD92] Bell D. and Grimson J., Distributed database systems, Addison Wesley, Reading Mass, 1992.

[CLMG93] Chabridon S., Liao J.C., Ma Y., Gruenwald L., Clustering techniques for Object-Oriented Database
Systems, Proc. 38th IEEE Computer Society International Conf, 1993, pp 232-242.

[CK86] Chou H., Kim W., A Unifying Framework for Version Control in a CAD Environment, Proc. 12th
VLDB Conf, 1986.

[CJ90] Cellary W., Jomier G., Consistency of Versions in Object-Oriented Databases, Proc. 16th VLDB
Conf., Brisbane, Australia, 1990.

[CM86] M .J. Carey and W. A. Muhanna, The performance of multiversion concurrency control algorithms,
ACM Transactions on Computers and Systems 4(4), pp. 338-378, November 1986.

[EC94] Estublier J. and Casallas R., The Adele Configuration Manager; In: Configuration Management , ed.
by W. Tichy, Wiley and son, in Software Trend Serie, 1994.

[GMH95] Garcia-Molina H. and Hsu M., Distributed databases; in: Modern Database Systems, The Object
Model, Interoperability and Beyond, W. Kim ed., Addison Wesley publish., Chapt. 23 -- pp. 477-493,
1995.

[KC87] Katz R., Chang E., Managing Change in a Computer Aided Design Database, Proc. 13th VLDB Conf.,
1987.

[KCB86] Katz R., Chang E., Bhateja R., Version Modeling Concepts for CAD Databases, Proc. ACM SIGMOD
Conf., 1986.

[KRW92] M.H. Kay, P.J. Rivett, and T.J. Walters, The Raleigh Activity Model : Integrating versions,
concurrency, and access control, Proc. BNCOD, 1992.

[KS92] W. Kõfer and H. Schoning, Mapping a version model to a complex-object data model, Proc. Data
Engineering, Tempe (Arizona), 1992.

[OV91] Oszu M.T. and Valduriez P., Principles of Distributed Database Systems, Prentice Hall 1991.

[Sarda90] Sarda N., Extensions to SQL for historical databases, IEEE Transactions on Knowledge and
DataEngineering, vol. 2, Nr. 2, pp. 220-230, June 1990.

[TCGJSS93] Tansel A. U., Clifford J., Gadia S., Jajodia S., Segev A. and Snodgrass R., Temporal Databases:
Theory, Design, and Implementation, Benjamin / Cummings, Database Systems and Applications,
1993.

[TOC93] G.Talens, C.Oussalah, and M.F. Colinas, Versions of simple and composite objects, Proc. 19th VLDB,
Dublin, 1993.

	Keywords: database distribution, version management
	1. Introduction
	2. Versioning Model
	3. Granules of Distribution
	3.1. Horizontal Distribution
	3.2. Vertical Distribution
	3.3. Mixed Distribution
	4. Implementation Issues
	4.1. Horizontal Distribution
	4.2 Adaptation to Vertical and Mixed Distribution

	5. Conclusions
	References

