L oad Balancing of Autonomous
Applications and Databases
in a Cluster System

STEPHANE GANCARSKI
LIP6, University Paris 6, France

HUBERT NAACKE
LIP6, University Paris 6, France

PATRICK VALDURIEZ
LIP6, University Paris 6, France

Abstract

Clusters of PC servers make new businesses like Application Service Provider
(ASP) economically viable. In the ASP context, hosted applications and
databases can be update-intensive and must remain autonomous so they can
be subject to definition changes to accommodate customer requirements. In
this paper, we propose a new solution for load balancing of autonomous ap-
plications and databases. Our solution is similar to Distributed Shared Mem-
ory in that it provides a shared address space to applications with distributed
and replicated databases. The main idea is to allow the system administrator
to control the tradeoff between consistency and performance when placing
applications and databases onto cluster nodes. Application requirements are
captured through rules stored in a shared catalog. They are used (at run time)
to allocate cluster nodes to user requests in a way that optimizes load balanc-
ing. They are also used with the database logs to detect and repair inconsis-
tency problems.

Keywords

database, cluster architecture, transaction processing, load balancing, replication,
consistency

1 Introduction

Clusters of PC servers now provide a cheap alternative to tightly-coupled mul-
tiprocessors such as Symmetric Multiprocessor (SMP) or Non Uniform Mem-
ory Architecture (NUMA). They make new businesses like Application Service

159

160 DISTRIBUTED DATA AND STRUCTURES 4

Provider (ASP) economically viable. In the ASP model, customers’ applications
and databases (including data and DBMS) are hosted at the provider site and need
be available, typically through the Internet, as efficiently as if they were local to
the customer site. Thus, the challenge for a provider is to fully exploit the cluster’s
parallelism and load balancing capabilities to obtain a good cost/performance ra-
tio. The typical solution to obtain good load balancing in cluster architectures is to
replicate applications and data at different nodes so that users can be served by any
of the nodes depending on the current load. This provides also high-availability
since, in the event of a node failure, other nodes can still do the work. This solution
has been successfully used by Web sites such as search engines using high-volume
server farms (e.g., Google). However, Web sites are typically read-intensive which
makes it easier to exploit parallelism.

In the ASP context, the problem is far more difficult. First, applications can be
update-intensive. Second, applications and databases must remain autonomous so
they can be subject to definition changes to accommodate customer requirements.
Replicating databases at several nodes, so they can be accessed by different users
through the same or different applications in parallel, can create consistency prob-
lems [7, 6]. For instance, two users at different nodes could generate conflicting
updates to the same data, thereby producing an inconsistent database. This is be-
cause consistency control is done at each node through its local DBMS. There are
two main solutions readily available to enforce global consistency. One is to use a
transaction processing monitor to control the access to replicated data. However,
this requires significant rewriting of the applications and may hurt transaction
throughput. A more efficient solution is to use a parallel DBMS such as Oracle
Rapid Application Cluster or DB2 Parallel Edition. Parallel DBMS typically pro-
vide a shared disk abstraction to the applications [9] so that parallelism can be
automatically inferred. But this requires heavy migration to the parallel DBMS
and hurts database autonomy.

Ideally, applications and databases should remain unchanged when moved to
the provider site’s cluster. In this paper, we propose a new solution for load balanc-
ing of autonomous applications and databases which addresses this requirement.
This work is done in the context of the Leg@Net project! sponsored by the RNTL
between LIP6, Prologue Software and ASPLine. Our solution is similar to Dis-
tributed Shared Memory (DSM) [3] in that it provides a shared address space to
applications with distributed and replicated databases. The main idea is to allow
the system administrator to control the database consistency/performance trade-
off when placing applications and databases onto cluster nodes. Databases and
applications can be replicated at multiple nodes to obtain good load balancing.
Application requirements are captured (at compile time) through rules stored in
a shared catalog used (at run time) to allocate cluster nodes to user requests. De-
pending on the users’ requirements, we can control database consistency at the

Lwww.industrie.gouv.fr/rntl/AAP2001/Fiches.Resume/L EG@NET.htm

Gancarski et al.: Load Balancing in a Cluster 161

cluster level. For instance, if an application is read-only or the required consis-
tency is weak, then it is easy to execute multiple requests in parallel at different
nodes. If, instead, an application is more update-intensive and requires strong
consistency, then an extreme solution is to run it at a single node and trade per-
formance for consistency. Between these two extreme application scenarios, there
are intermediate cases where copy consistency can be violated. Our solution ex-
ploits the database logs and the consistency rules to perform copy reconciliation.

This paper is organized as follows. Section 2 introduces our cluster archi-
tecture and discusses the various options for load balancing of applications and
databases. Section 3 describes the way we can capture and exploit consistency
rules about applications to obtain load balancing. Section 4 describes our execu-
tion model which uses these rules to perform load balancing and manage global
consistency.

2 Cluster architecture

In this section, we introduce the conceptual architecture for processing user re-
quests in our cluster system and discuss the main options available for placing
applications, DBMS and databases in the system.

Figure 1 shows the main elements involved for processing a user request com-
ing, for instance, from the Internet.

Request (user, app) —$ connection
|

authentification app
authorization

connection

ueryin,
S—— yene

o5

Figure 1: Cluster conceptual architecture

First, the user is authenticated and authorized using the directory which cap-
tures information about users and applications. If successful, the user gets a con-
nection to the application (possibly after instantiation) which can then connect to
the DBMS and issue queries for retrieving and updating database data.

We consider a cluster system with similar nodes, each having one or more
processors, main memory (RAM) and disk. There are various ways to organize
the elements of the conceptual architecture in the cluster system. For simplicity,

162 DISTRIBUTED DATA AND STRUCTURES 4

we ignore the directory element which is used to route requests to nodes. We
present three main organizations to obtain parallelism and discuss their consis-
tency/performance trade-offs. The first and simplest one is client-server DBMS
connection (see Figure 2) whereby a client application at one node connects to
a remote DBMS at another node (where the same application can also run). The
client node only needs connectivity software to access the remote DBMS. This or-
ganization allows for application parallelism and yields strong consistency, since
all database accesses go through the same DBMS. However, remote database ac-
cess is much less efficient than local access. Furthermore, there is no database
parallelism. This organization is well-suited when strong consistency is impor-
tant or applications are not data-intensive.

connection
app querying app
node2 | e >
DBMS
DB
node 1

Figure 2: Client-server DBMS connection

The second organization is peer-to-peer DBMS connection (see Figure 3)
whereby a client application at one node connects to a local DBMS which trans-
parently accesses the same DBMS at another node using a distributed database
capability. This organization also allows for application parallelism and yields
strong consistency, since all database accesses go through one database which is
under the control of the distributed DBMS. Furthermore, the DBMS at the client
node can cache data and thus reduce the overhead of remote access. This orga-
nization is well-suited when strong consistency is important or applications have
strong locality of reference. However, remote database access can still be quite
inefficient and there is no database parallelism.

The third organization is replicated database (see Figure 4) whereby the database
is replicated across several nodes. We use multi-master (or symmetric) replication
[7] whereby each (master) node can perform updates to the copy it holds. When
a node updates a copy, it also updates (or synchronizes) the other copies in either
synchronous mode (within the same transaction) or asynchronous mode (in sepa-
rate transactions). There is both application and database access parallelism, and
no need for remote access between nodes. Thus, this is much more efficient than
the previous organizations. However, conflicting updates to the database from two
different nodes can yield to consistency problems (e.g. the same data get different

Gancarski et al.: Load Balancing in a Cluster 163

app al_)_P
{ connection
f querying . \
querying
DBMS
cache — > DBMS
node 2
app nodeml

Figure 3: Peer-to-peer DBMS connection

values in different copies) which must then be detected and corrected. Correction
can be based on priority assigned to one of the copies, called reference copy. This
organization is well-suited when consistency can be relaxed or applications are
read-intensive.

I |copying | ()
DB < DB

Figure 4: Replicated database

These three organizations are interesting alternatives which can be combined
to better control the consistency/performance trade-off of various applications and
increase load balancing. For instance, an application at one node could do client-
server connection to one or more replicated databases, the choice of the replicated
database being made depending on the load.

164 DISTRIBUTED DATA AND STRUCTURES 4

3 Trading consistency for load balancing

Applications update the database through transactions. In this section, we discuss
transaction parallelism and show how we can capture and exploit consistency
rules about applications in order to obtain transaction parallelism.

3.1 Transaction parallelism

The replicated database organization may increase transaction parallelism. For
simplicity, we focus on inter-transaction parallelism, whereby transactions updat-
ing the same database are dynamically allocated to different master nodes. The
choice of a node for a given transaction depends on the current load of the cluster;
intuitively, a transaction should be sent to one of the least loaded nodes. But it also
depends on the application requirements in terms of consistency. If the application
requires strong consistency, client-server or peer-to-peer organizations are better.
If the application requires weaker consistency, it is possible to run transactions
in parallel at different master nodes. Even with the replicated database organiza-
tion, strong consistency can be achieved by simply allocating transactions to the
reference master node, which always holds the up-to-date consistent copy.

3.2 Using consistency rules

Application consistency requirements are expressed in terms of rules. Examples
of consistency rules are data-independency between transactions, integrity con-
straints [1], access control rules, etc. They may be stored explicitly by the system
administrator or inferred from the DBMS catalogs. They are primarily used by
the system administrator to place and replicate data in the cluster, similar to par-
allel DBMS [5, 9]. They are also used by the system to decide at which nodes and
under which conditions a transaction can be executed.

To illustrate how we can use consistency rules, let us consider two transactions
T1 and T2 on the same database executed in parallel at master nodes N1 and N2,
respectively. There are three interesting cases.

First, assume T1 and T2 are data independent, i.e. data accessed by T1 and
T2 are disjoint sets. In this case, copy consistency can be simply achieved by
propagating the changes made by T1 to N2 and those made by T2 to N1. Data
independency between transactions may be statically stored in the directory, either
explicitly stated or inferred at compile-time. It may also be deduced at run-time,
according to the user profile (e.g. access authorization) or by analyzing database
logs. The same policy can be applied when T1 and T2 are not data independent but
are commutative, following the idea of multi-level transactions [11]: propagating
T1 to N2 after the execution of T2 leads to the same database state as propagating
T2 to N2 after the execution of T1. However, commutativity between non data-

Gancarski et al.: Load Balancing in a Cluster 165

independent transactions should be explicitly stated, since it seems difficult to
infer it from both static and dynamic knowledge.

The second case is when T1 and T2 perform conflicting non-commutative
writes, such as booking the same hotel room. In this case, conflict resolution must
take into account two kinds of rules, namely priority and resolution mode. Prior-
ity expresses which result (of T1 or T2) should be kept. For instance, the changes
made by the conflicting transaction with the highest priority should be propagated
to the other sites. Priority may be inferred from static rules, such as user profile or
the fact that a node is a reference master for the copy. It may also take into account
dynamic features, such as transaction timestamps and even use random ranking
in case of undecidability. The resolution mode defines the policy to restore con-
sistency. When the changes made by a transaction with lower priority cannot be
propagated, the system must know what to do. For instance, it may notify the user
that the update is being overwritten. It may also compensate the whole transac-
tion, e.g. canceling the room reservation may lead to cancel the car reservation
which is now useless. It may also retry part of the transaction, e.g. to get a room
in a separate transaction. In this case, the system must be able to notify the user
of which part of its transaction was successfully performed (here the car reserva-
tion) and which part has to be retried (here the room reservation). To this end, the
system analyzes the database logs and detects that only the room reservation has
been overwritten. The system may also, in some cases, automatically retry any
(partially) aborted or overwritten transaction.

The third case deals with read/write consistency. Compensating a transaction
T in case of conflict resolution can effect another transaction T’ reading data writ-
ten by T, which become dirty. For the sake of consistency, T’ should in turn be
aborted or compensated. In some cases, this cascading rollback can be avoided
using application knowledge. For instance if T and T’ are both booking rooms,
the system can infer that, although T and T’ may access the same data, the effects
of compensating T (i.e. canceling a reservation) cannot lead to compensate T°.
Consistency rules may also take into account the conflict resolution frequency.
For instance, transaction T requires consistent data, but can operate on data that
was consistent less than 10 minutes ago since the system knows that the database
state could not vary sufficiently in 10 minutes to change the behavior of T.

3.3 Managing consistency rules

Consistency rules (CR) are stored in the CR base (see Figure 5), and maintained
by the system administrator. They are expressed in a declarative language. Im-
plicit rules refer to data already maintained by the system (e.g. users authoriza-
tions). Hence, they include queries sent to the database catalog to retrieve the
data.

Incoming transactions are managed by the execution manager. It retrieves con-
sistency rules associated to a given transaction and defines a run-time policy for

166 DISTRIBUTED DATA AND STRUCTURES 4

Trans. |Node | Status
Exec. Mgr
. >
Incoming
transactions)
Run ti
un time
policy V\
Sent @ Consistengy
. ules
transactiong
Rule language
Explicit
~ rules
DBMS queries CR base
catalog —
\blmphcn
metadata * [rules

Figure 5: Consistency rule management

the transaction. The run-time policy controls the execution of the transaction on a
given node, at the required level of consistency.

4 Execution model

In this section, we present the execution model for the cluster architecture. The ob-
jective is to increase load balancing following the consistency rules. The problem
can be reduced as follows: given the cluster’s state (nodes load, running trans-
actions, etc.), the cluster’s data placement, and a transaction T with a number of
consistency rules, choose the node(s) where T should be executed with minimal
cost (including the cost of synchronizing replicas). Choosing the optimal node is

Gancarski et al.: Load Balancing in a Cluster 167

done in two steps: (1) choosing the data access method and the synchronization
mode, and (2) choosing the optimal node among all the nodes that support the
data access method chosen at step (1).

4.1 Choice of data access method

Choosing the data access method involves deciding whether the transaction ac-
cesses reference data (local or remote) or replicated data based on consistency
rules. We have the following possible methods:

Access to reference data. This method is necessary to preserve data consis-
tency when several transactions update the same data. It serializes updates, which
has the negative effect of increasing contention as the degree of concurrency in-
creases.

Accessto synchronousreplicated data. This method accesses a replica which
is not the reference copy, while preserving copy consistency. Synchronization is
done immediately at transaction commit time, within the transaction. Conflicts
occurring during synchronization must be resolved to yield a consistent state of
all copies. If conflict resolution is not allowed by the transaction, then it must
be aborted and restarted until there is no conflict. This method is appropriate for
heavy transactions (to avoid overloading the reference master node) and when
the chance of conflict is low. Synchronization is not necessary if the absence of
conflicts can be inferred from the transaction log or consistency rules.

Accessto asynchronousreplicated data. This method accesses also a replica
which is not the reference copy, but performs copy synchronization after the trans-
action commitment at specified times. If a conflict occurs during synchronization,
since the transaction has been committed, the only solutions are to either compen-
sate the transaction or notify the user or administrator. This method is appropriate
when T is disjoint from all transactions that accessed reference data since the last
synchronization.

Algorithm. The choice of the candidate access methods (CAM) is made as
follows (RD stands for reference data, SD for synchronous replicated data, and
AD for asynchronous replicated data):

if T is compensatable or probability of conflict=0

or weak consistency is required

then CAM = {RD, SD, AD}

else if T is commutable or conflicts are resolvable
then CAM = {RD, SD}
else CAM = {RD}

endif

endif

168 DISTRIBUTED DATA AND STRUCTURES 4

When there are several candidate access methods, the choice is made at the
next step, when choosing the best node.

4.2 Choice of optimal node

This is an optimization problem. The initial search space is the set of all the nodes
which support the access methods chosen at step (1). The execution cost of T at
each candidate node must be estimated based on a cost function which takes into
account the cluster load, the delays due to the serialization of concurrent trans-
actions and possibly the cost of synchronizing replicas. Thus the choice of the
optimal node depends on the accuracy of the cost function. Alternatively, the sys-
tem administrator can overload cost functions with specific ones in the directory
for important transactions.

4.3 Transaction execution

After steps (1) and (2), the execution manager sends the transaction to the chosen
node with the chosen access method (see Figure 5) and registers the transaction in
its table. Periodically (or on user’s demand), it performs copy synchronization. To
get enough details about the current state of copies, the execution manager reads
the DBMS log (which keeps the history of update operations) of all the nodes that
have executed transactions since the last synchronization. Then, it resolves con-
flicts based on priority, timestamps, or user-defined reconciliation rules. If auto-
matic conflict resolution is not possible, the execution manager fires a notification
alert to the user or the administrator with details about conflicting operations.

5 Conclusion

In this paper, we proposed a new solution for load balancing of autonomous appli-
cations and databases in the context of ASP. Our solution is similar to Distributed
Shared Memory in that it provides a shared address space to applications with
distributed and replicated databases. The main idea is to allow the system admin-
istrator to control the consistency/performance tradeoff when placing applications
and databases onto cluster nodes.

We studied three organizations for placing applications and databases in a
cluster system: client-server, peer-to-peer, and (multi-master) replicated database.
These three organizations are interesting alternatives which can be combined to
better control the consistency/performance trade-off of various applications and
increase load balancing.

Application requirements are captured through rules stored in a shared catalog
(used at run time). They are used to choose the best organization for applications
and databases, to prevent, detect and repair copy inconsistency; and optimize load

Gancarski et al.: Load Balancing in a Cluster 169

balancing by estimating the processing cost of transactions, including conflict
resolution cost.

In the near future, we plan to implement the proposed solution on LIP6’s
cluster architecture running Linux and Oracle 8i. Then, we will experiment with
application samples provided by our partners in Leg@Net in our cluster. We will
also develop a simulation model, calibrated with our implementation, to study
how our solution will scale-up to very large cluster configurations.

Other interesting projects deal with DSM for data management in cluster ar-
chitectures. The PowerDB project at ETH Zurich deals with the coordination of
the cluster nodes in order to provide a uniform and consistent view to the clients.
Its solution fits well for some kinds of applications, such as XML document man-
agement [2] or read-intensive OLAP queries [8]. However, it does not address the
problem of seamless integration of legacy applications. The Trapp project at Stan-
ford University [4] addresses the problem of precision/performance trade-off. It
is close to us since it shows that performance gains can often be achieved if preci-
sion requirements (exact consistency of replicated data) can be relaxed. However,
the focus is on numeric computation of aggregation queries. The GMS project at
Washington university uses global information to globally optimize page replace-
ment and prefetching decisions over the cluster [10]. However, it mainly addresses
system-level or Internet applications (such as the Porcupine mail server). In sum-
mary, none of them addresses the problems of leaving databases and applications
autonomous and unchanged as in our research.

References

[1] DouckeT, A., GANCARSKI, S., LEON, C., AND Rukoz, M. Checking
integrity constraints in multidatabase systems with nested transactions. In
Int. Conf. On Cooperative Information Systems (COOPIS) (Trento (ltaly),
2001).

[2] GrABS, T., BOHM, K., AND SCHEK, H.-J. Scalable distributed query
and update service implementations for XML document elements. In IEEE
RIDE Wshp. on Doc. Mgt. for Data Intensive Business and Scientific Appli-
cations. (2001).

[3] HiLL, M., LARUS, J., REINHARDT, S., AND WooD, D. Cooperative
shared memory: Software and hardware for scalable multiprocessors. ACM
TOCS 11, 4 (1993).

[4] OLsTON, C., AND WIDOM, J. Offering a precision-performance tradeoff
for aggregation queries over replicated data. In VLDB International Confer-
ence (2000).

170 DISTRIBUTED DATA AND STRUCTURES 4

[5] Ozsu, T., AND VALDURIEZ, P. Distributed and parallel database systems
- technology and current state-of-the-art. ACM Computing Surveys 28, 1
(1996).

[6] Ozsu, T., AND VALDURIEZ, P. Principles of Distributed Database Systems
(2nd edition). Prentice Hall, 1999.

[7] PAaciTTI, E., AND VALDURIEZ, P. Replicated databases: concepts, archi-
tectures and techniques. Network and Information Systems Journal 1, 3
(1998).

[8] ROHM, U., BOHM, K., AND SCHEK, H.-J. Cache-aware query routing in
a cluster of databases. In IEEE Conference on Data Engineering (2001).

[9] VALDURIEZ, P. Parallel database systems: open problems and new issues.
Int. Journal on Distributed and Parallel Databases 1, 2 (1993).

[10] VOELKER, G., ANDERSON, E., KIMBREL, T., FEELEY, M., CHASE, J.,
KARLIN, A., AND LEVY, H. Implementing cooperative prefetching and
caching in a global memory system. In ACM Sigmetrics Conference on
Performance Measurement, Modeling, and Evaluation (1998).

[11] WEIKuM, G. Principles and realization strategies of multilevel transaction
management. ACM Transaction on Database System 16, 1 (1991).

Stéphane Gangarski is Assistant Professor of Computer Science at University Pierre et
Marie Curie (Paris 6), and researcher at LIP6 lab. E-mail: Stephane.Gancarski@lip6.fr

Hubert Naacke is Assistant Professor of Computer Science at University Pierre et Marie
Curie (Paris 6), and researcher at LIP6 lab. E-mail: Hubert.Naacke@lip6.fr

Patrick Valduriez is currently a Professor of Computer Science at University Pierre et
Marie Curie (Paris 6), on leave from INRIA, the national research center for computer sci-
ence in France. He is the author or co-author of over 100 technical papers and several books
in computer science, among which "Principles of Distributed Database Systems” published
by Prentice Hall in 1991 and 1999 (second edition). E-mail : Patrick.Valduriez@lip6.fr

