
Parallel Processing with Autonomous Databases in a
Cluster System

Stéphane Gançarski1, Hubert Naacke1, Esther Pacitti2, Patrick Valduriez1

1LIP6, University Paris 6
8, rue du Cap. Scott 75015 PARIS

FirstName.LastName@lip6.fr
2Institut de Recherche en Informatique de Nantes

Esther.Pacitti@irin.univ-nantes.fr

Abstract. We consider the use of a cluster system for Application Service Pro-
vider (ASP). In the ASP context, hosted applications and databases can be up-
date-intensive and must remain autonomous. In this paper, we propose a new
solution for parallel processing with autonomous databases, using a replicated
database organization. The main idea is to allow the system administrator to
control the tradeoff between database consistency and application performance.
Application requirements are captured through execution rules stored in a
shared directory. They are used (at run time) to allocate cluster nodes to user
requests in a way that optimizes load balancing while satisfying application
consistency requirements. We also propose a new preventive replication
method and a transaction load balancing architecture which can trade-off con-
sistency for performance using execution rules. Finally, we discuss the on-
going implementation at LIP6 using a Linux cluster running Oracle 8i.

1. Introduction

Clusters of PC servers now provide a cheap alternative to tightly-coupled multiproc-
essors such as Symmetric Multiprocessor (SMP) or Non Uniform Memory Architec-
ture (NUMA). They make new businesses like Application Service Provider (ASP)
economically viable. In the ASP model, customers’ applications and databases (in-
cluding data and DBMS) are hosted at the provider site and need be available, typi-
cally through the Internet, as efficiently as if they were local to the customer site.
Thus, the challenge for a provider is to fully exploit the cluster’s parallelism and load
balancing capabilities to obtain a good cost/performance ratio. The typical solution to
obtain good load balancing in cluster architectures is to replicate applications and
data at different nodes so that users can be served by any of the nodes depending on
the current load. This also provides high-availability since, in the event of a node
failure, other nodes can still do the work. This solution has been successfully used by
Web sites such as search engines using high-volume server farms (e.g., Google).
However, Web sites are typically read-intensive which makes it easier to exploit par-
allelism.

In the ASP context, the problem is far more difficult. First, applications can be up-
date-intensive. Second, applications and databases must remain autonomous so they
can be subject to definition changes to accommodate customer requirements. Repli-
cating databases at several nodes, so they can be accessed by different users through
the same or different applications in parallel, can create consistency problems [15],
 [9]. For instance, two users at different nodes could generate conflicting updates to
the same data, thereby producing an inconsistent database. This is because consis-
tency control is done at each node through its local DBMS. There are two main solu-
tions readily available to enforce global consistency. One is to use a transaction proc-
essing monitor to control the access to replicated data. However, this requires
significant rewriting of the applications and may hurt transaction throughput. A more
efficient solution is to use a parallel DBMS such as Oracle Rapid Application Cluster
or DB2 Parallel Edition. Parallel DBMS typically provide a shared disk abstraction to
the applications [21] so that parallelism can be automatically inferred. But this re-
quires heavy migration to the parallel DBMS and hurts database autonomy.
Ideally, applications and databases should remain unchanged when moved to the pro-
vider site’s cluster. In this paper, we propose a new solution for load balancing of
autonomous applications and databases which addresses this requirement. This work
is done in the context of the Leg@Net project1 sponsored by the RNTL between
LIP6, Prologue Software and ASPLine, whose objective is to demonstrate the viabil-
ity of the ASP model for pharmacy applications in France. Our solution exploits a
replicated database organization. The main idea is to allow the system administrator
to control the database consistency/performance tradeoff when placing applications
and databases onto cluster nodes. Databases and applications can be replicated at
multiple nodes to obtain good load balancing. Application requirements are captured
(at compile time) through execution rules stored in a shared directory used (at run
time) to allocate cluster nodes to user requests. Depending on the users’ requirements,
we can control database consistency at the cluster level. For instance, if an application
is read-only or the required consistency is weak, then it is easy to execute multiple re-
quests in parallel at different nodes. If, instead, an application is update-intensive and
requires strong consistency (e.g. integrity constraints satisfaction), then an extreme
solution is to run it at a single node and trade performance for consistency. Or, if we
want both consistency and replication (e.g. for high availability), another extreme so-
lution is synchronous replication with 2 phase commit (2PC) [9] for refreshing repli-
cas. However, 2PC is both costly in terms of messages and blocking (failure of the
coordinator cannot be terminated independently by the participants).
There are cases where copy consistency can be relaxed. With optimistic replication
 [12], transactions are locally committed and different replicas may get different val-
ues. Replica divergence remains until reconciliation. Meanwhile, the divergence must
be controlled for at least two reasons. First, since synchronization consists in produc-
ing a single history from several diverging ones, the higher the divergence is, the
more difficult the reconciliation. The second reason is that read-only applications do
not always require to read perfectly consistent data and may tolerate some inconsis-
tency. In this case, inconsistency reflects a divergence between the value actually read

1 see www.industrie.gouv.fr/rntl/AAP2001/Fiches_Resume/LEG@NET.htm

and the value that should have been read in ACID mode. Non-isolated queries are
also useful in non replicated environments [2]. Specification of inconsistency for que-
ries has been widely studied in the literature, and may be divided in two dimensions,
temporal and spatial [19]. An example of temporal dimension is found in quasi-copies
 [1], where a cached (image) copy may be read-accessed according to temporal condi-
tions, such as an allowable delay between the last update of the copy and the last up-
date of the master copy. The spatial dimension consists of allowing a given "quantity
of changes" between the values read-accessed and the effective values stored at the
same time. This quantity of changes, referred to as import-limit in epsilon transac-
tions [24], may be for instance the number of data items changed, the number of up-
dates performed or the absolute value of the update. In the continuous consistency
model [25], both temporal dimension (staleness) and spatial dimension (numerical er-
ror and order error) are controlled. Each node propagates its writes by either pull or
push access to other nodes, so that each node maintains a predefined level of consis-
tency for each dimension. Then each query can be sent to a node having a satisfying
level of consistency (w.r.t. the query) in order to optimize load balancing.
In this paper, we strive to capitalize on the work on relaxing database consistency for
higher performance which we apply in the context of cluster systems. We make the
following contributions: (i) a replicated database architecture for cluster systems that
does not hurt application and database autonomy, using non intrusive database tech-
niques, i.e. techniques that work independently of any DBMS; (ii) a new preventive
replication method that provides strong consistency without the overhead of synchro-
nous replication, by exploiting the cluster’s high speed network; (iii) a transaction
load balancing architecture which can trade-off consistency for performance using
optimistic replication and execution rules; (iv) a conflict manager architecture which
exploits the database logs and execution rules to perform replica reconciliation among
heterogeneous databases.
This paper is organized as follows. Section 2 introduces our cluster system architec-
ture with database replication. Section 3 presents our replication model with both pre-
ventive and optimistic replication. Section 4 describes the way we can capture and
exploit execution rules about applications. Section 5 describes our execution model
which uses these rules to perform load balancing and manage global consistency.
Section 6 briefly describes our on-going implementation. .Section 7 compares our ap-
proach with related work. Section 8 concludes.

2. Cluster architecture

In this section, we introduce the architecture for processing user requests coming, for
instance, from the Internet, into our cluster system and discuss our solution for plac-
ing applications, DBMS and databases in the system.
The general processing of a user request is as follows. First, the request is authenti-
cated and authorized using a directory which captures information about users and
applications. The directory is also used to route requests to nodes. If successful, the
user gets a connection to the application (possibly after instantiation) at some node

which can then connect to a DBMS at some, possibly different, node and issue que-
ries for retrieving and updating database data.
We consider a cluster system with similar nodes, each having one or more processors,
main memory (RAM) and disk. Similar to multiprocessors, various cluster system ar-
chitectures are possible: shared-disk, shared-cache and shared-nothing [10]. Shared-
disk and shared-cache require a special interconnect that provide a shared space to all
nodes with provision for cache coherence using either hardware or software. Using
shared disk or shared cache requires a specific DBMS implementation like Oracle
Rapid Application Cluster or DB2 Parallel Edition. Shared-nothing is the only archi-
tecture that supports our autonomy requirements without the additional cost of a spe-
cial interconnect. Thus, we strive to exploit a shared-nothing architecture.
There are various ways to organize the applications, DBMS and databases in our
shared-nothing cluster system. We assume applications typically written in a pro-
gramming language like C, C++ or Java making DBMS calls to stored procedures us-
ing a standard interface like ODBC or JDBC. Stored procedures are in SQL, PSM
(SQL3's Persistent Stored Modules) or any proprietary language like Oracle's
PL/SQL or Microsoft's TSQL. In [4], we presented and discussed three main organi-
zations to obtain parallelism. The first one is client-server DBMS connection whereby
a client application at one node connects to a remote DBMS at another node (where
the same application can also run). The second organization is peer-to-peer DBMS
connection whereby a client application at one node connects to a local DBMS which
transparently accesses the same DBMS at another node using a distributed database
capability. The third organization is replicated database whereby a database and
DBMS is replicated across several nodes. These three organizations are interesting al-
ternatives which can be combined to better control the consistency/performance
trade-off of various applications and optimize load balancing. For instance, an appli-
cation at one node could do client-server connection to one or more replicated data-
bases, the choice of the replicated database being made depending on the load.
In this paper, we focus on the replicated database organization which is the most gen-
eral as it provides for both application and database access parallelism. We use multi-
master replication [15] whereby each (master) node can perform updates to the rep-
lica it holds. However, conflicting updates to the database from two different nodes
can yield to consistency problems (e.g. the same data get different values in different
replicas). The classical solution to this problem is optimistic and based on conflict de-
tection and resolution. However, there is also a preventive solution which we propose
and avoids conflicts at the expense of a forced waiting time for transactions. Thus, we
support both replication schemes to provide a continuum from strong consistency
with preventive replication to weaker consistency with optimistic replication.
Based on these choices, we propose the cluster system architecture in Figure 1 which
does not hurt application and database autonomy. Applications, databases and DBMS
are replicated at different nodes without any change by the cluster administrator. Be-
sides the directory, we add 4 new modules which can be implemented at any node.
The application load balancer simply routes user requests to application nodes using
a traditional load balancing algorithm. The transaction load balancer intercepts
DBMS procedure calls (in ODBC or JDBC) from the applications, generates a trans-
action execution plan (TEP), based on application and user consistency requirements

obtained from the directory. For instance, it decides on the use of preventive or opti-
mistic replication for a transaction. Finally, it triggers transaction execution (to exe-
cute stored procedures) at the best nodes, using run-time information on nodes' load.
The preventive replication manager orders transactions at each node in a way that
prevents conflicts and generates refresh transactions to update replicas. The conflict
manager periodically detects conflicts introduced on replicas by transactions run in
optimistic mode using the DBMS logs and solves them using information in the di-
rectory.

Application load balancer

Conflicts manager

app1 app2 appn

Preventive replication
manager

DB

DBMS

DB

DBMS

DB

DBMS

DB

DBMS

Transaction load balancer Directory

Cluster

In
te

rn
et

Fig. 1. Cluster system architecture

3. Replication Model

In our context, replication of data at different cluster nodes is a major way to increase
parallelism. However, updates to replicated data need be propagated efficiently to all
other copies. A general solution widely used in database systems is lazy replication.
In this section, we discuss the value of lazy replication in cluster systems, and pro-
pose a new multi-master lazy replication scheme with conflict prevention and its ar-
chitecture. Our scheme can also reduce to the classical multi-master replication
scheme with conflict resolution.

3.1. Lazy replication

With lazy replication, a transaction can commit after updating a replica at some node.
After the transaction commits, the updates are propagated towards the other replicas,
which are then updated in separate transactions. Unlike synchronous replication (with
2 phase commit), updating transactions need not wait that mutual copy consistency be
enforced. Thus lazy replication does not block and scales up much better compared
with the synchronous approach. This performance advantage has made lazy replica-
tion widely accepted in practice, e.g. in data warehousing and collaborative applica-
tions on the Web [12].

Following [13] [14], we characterize a lazy replication scheme using: ownership, con-
figuration, transaction model propagation, refreshment. The ownership parameter de-
fines the permissions for updating replicas. If a replica R is updateable, it is called a
primary copy, otherwise it is called a secondary copy, noted r. A node M is said to be
a master node if it only stores primary copies. A node S is said to be a slave node if it
only stores secondary copies. In addition, if a replica copy R is updateable by several
master nodes then it is said to be a multi-owner copy. A node MO is said to be a
multi-owner master node if it stores only multi-owner copies. For cluster computing
we only consider master, slave and multi-owner master nodes. A master node M or a
multi-owner node MO is said to be a master of a slave node S iff there exists a secon-
dary copy of r in S of a primary copy R in M or MO. We also say that S is a slave of
M or MO.
The transaction model defines the properties of the transactions that access replicas at
each node. Moreover, we assume that, once a transaction is submitted for execution
to a local transaction manager at a node, all conflicts are handled by the local concur-
rency control protocol. In our framework, we fix the properties of the transactions.
We focus on four types of transactions that read or write replicas: update transactions,
multi-owner transactions, refresh transactions and queries. An update transaction T
updates a set of primary copies. A refresh transaction, RT, is associated with an up-
date transaction T, and is made of the sequence of write operations performed by T
used to refresh secondary copies. We use the term multi-owner transaction, noted
MOT, to refer to a transaction that updates a multi-owner copy. Finally, a query Q,
consists of a sequence of read operations on primary or secondary copies.
The propagation parameter defines when the updates to a primary copy or multi-
owner copy R must be multicast towards the slaves of R or all owners of R. The mul-
ticast protocol is assumed to be reliable and preserve the global FIFO order [17]. We
focus on deferred update propagation: the sequence of operations of each refresh
transaction associated with an update transaction T is multicast to the appropriate
nodes within a single message M, after the commitment of T.
The refreshment parameter defines when should a MOT or RT be triggered and the
commit order of these transactions. We consider the deferred triggering mode. With a
deferred-immediate strategy, a RT or MOT is submitted for execution as soon as the
corresponding message M is received by the node.

3.2. Managing replica consistency

Depending on which node is allowed user updates to a replica, several replication
configurations can be obtained. The lazy master (or asymmetric) configuration allows
only one node, called master node, to perform user updates on the replica; the other
nodes can only perform reads. Figure 2(a) shows an example of a lazy master bowtie
configuration in which there are two nodes storing primary copies R and S and their
secondary copies r1, s1 and r2, s2 at the slave nodes. The multi-master (or symmetric)
configuration allows all nodes storing a replica to be masters. Figure 2(b) shows an
example of a multi-master configuration in which all master nodes store a primary
copy of S and R. There are also hybrid configurations.

Different configurations yield different performance/consistency trade-offs. For in-
stance a lazy master configuration such as bowtie is well suited for read intensive
workloads because reading secondary copies does not conflict with any update trans-
action. In addition, since the updates are rare, the results of a query on a secondary
copy r at time t would be, in most cases, the same as reading the corresponding pri-
mary copy R at time t. Thus, the choice of a configuration should be based on the
knowledge of the transaction workload. For update-intensive workloads, the multi-
master configuration seems best as the load of update transactions can be distributed
among several nodes.

R r1, s1

S r2, s2

S1, R1 S3, R3

S2, R2 S4, R4

a) bowtie b) multi-master

Fig. 2. Replication configurations

For all configurations, the problem is to manage data consistency. That is, any node
that holds a replica should always see the same sequence of updates to this replica.
Consistency management for lazy master has been addressed in [14]. The problem is
more difficult with multi-master where independent transactions can update the same
replica at different master nodes. A conflict arises whenever two or more transactions
update the same object. The main solution used by replication products [20] is to tol-
erate and resolve conflicts. After the commitment of a transaction, a conflict detection
mechanism checks for conflicts which are resolved by undoing and redoing transac-
tions using a log history. During the time interval between the commitment of a trans-
action and conflict resolution, users may read and write inconsistent data. This solu-
tion is optimistic and works best with few conflicts. However, it may introduce
inconsistencies.
We propose an alternative, new solution which prevents conflicts and thus avoids in-
consistency. A detailed presentation of the preventive replication scheme and its algo-
rithms is in [15]. With this preventive solution, each transaction T is associated with a
chronological timestamp value, and a delay d is introduced before each transaction
submission. This delay corresponds to the maximum amount of time to propagate a
message between any two nodes. During this delay, all transactions received are or-
dered following the timestamp value. After the delay has expired, all transactions
younger than T are guaranteed to be received. Therefore, transactions at each node
are executed following the same timestamp order and consistency is assured.
This preventive approach imposes waiting a specific delay d, before the execution of
multi-owner and refresh transactions. Our cluster computing context is characterized
by short distance, high performance inter-process communication where error rates
are typically low. Thus, d can be negligible to attain strong consistency. On the other
hand, the optimistic approach avoids the waiting time d but must deal with inconsis-
tency management. However, there are many applications that tolerate reading incon-
sistent data. Therefore, we decided to support both replication schemes to provide a
continuum from strong consistency with preventive replication to weaker consistency
with optimistic replication.

3.3. Preventive Replication Manager Architecture

This section presents the system architecture of a master, multi-master or slave node
with conflict prevention. This architecture can be easily adapted to the simpler opti-
mistic approach, with the addition of a conflict manager (see Section 5). To maintain
the autonomy of each node, we assume that six components are added to a regular da-
tabase system in order to support lazy replication (see Figure 3).
The Replica Interface manages the incoming multi-owner transaction submission.
The Receiver and Propagator implement reception and propagation of messages, re-
spectively. The Refresher implements a refreshment algorithm. Finally, the Deliverer
manages the submission of multi-owner transactions and refresh transactions to the
local transaction manager.

Fig. 3. Master, Multi-owner or Slave node Architecture

The Log Monitor uses log sniffing to extract the changes to primary copies by con-
tinuously reading the content of a local History Log (noted H). The sequence of up-
dates of an update transaction T and its timestamp C are read from H and written to
the Input Log, that is used by the Propagator.
Next, multi-owner transactions are submitted through the Replica Interface. The ap-
plication program calls the Replica Interface passing as parameter the multi-owner
transaction MOT. The Replica Interface then establishes a timestamp value C for
MOT. Afterwards, the sequence of operations of MOT is written into the Owner Log
followed by C. Whenever the multi-owner transaction commits, the Deliverer notifies
the event Replica Interface. After MOT commitment, the replica interface ends its
processing and the application program continues its next execution step.
The Receiver implements message reception. Messages are received and stored in a
Reception Log. The receiver then reads messages from this log and stores each mes-
sage in an appropriate FIFO pending queue. The content of the queues form the input
to the Refresher. The Propagator reads continuously the contents of the Owner and
Input Log and for each sequence of updates followed by C read, it constructs a mes-
sage M. Messages are multicast through the network interface.

R e f r e s h e r
(q u e u e s)

D B M S

R e c e i v e rP r o p a g a t o r

N e t w o r k

R e f r e s h e r
L o g

R - L o g

O w n e r
l o g

D e l i v e r e r

R e p l i c a
I n t e r f a c e

M u l t i - o w n e r
T r a n s a c t i o n s L o c a l L o g

L o g
M o n i t o r I n p u t L o g

Q u e r i e s a n d U p d a t e T r a n s a c t i o n s

The Refresher implements the refreshment algorithm. It reads the contents of a set of
pending queues. Based on its refreshment parameters, it submits refresh transactions
and multi-owner update transactions by inserting them into the running queue. The
running queue contains all ordered transactions not yet entirely executed. Finally, the
Deliverer submits refresh and multi-owner transactions to the local transaction man-
ager. It reads the contents of the running queue in a FIFO order and submits each
write operation as part of a transaction to the local transaction manager. Whenever a
multi-owner transaction is committed, it notifies the event to the Replica Interface.

4. Trading consistency for load balancing

The replicated database organization may increase transaction parallelism. For sim-
plicity, we focus on inter-transaction parallelism, whereby transactions updating the
same database are dynamically allocated to different master nodes. There are two im-
portant decisions to make for an incoming transaction: choosing the node to run it,
which depends on the current load of the cluster, and the replication mode (preventive
or optimistic) which depends on the degree of consistency desired. In this section, we
show how we can capture and use execution rules about applications in order to ob-
tain transaction parallelism, by exploiting the optimistic replication mode.

4.1 Motivating example

To illustrate how we can tolerate inconsistencies, we consider a very simple example
adapted from the TPC-C benchmark1. Similar to the Pharmacy applications in our
Leg@net project, TPC-C deals with customers that order products whose stock must
be controlled by a threshold value. We focus on table Stock(item, quantity, thresh-
old). Procedure DecreaseStock decreases the stock quantity of item id by q.

procedure DecreaseStock(id, q) :
 UPDATE Stock SET quantity = quantity – q WHERE item = id;

Let us consider a Stock tuple [1, 30, 10] replicated at nodes N1 and N2, transaction
T1 at N1 that calls DecreaseStock(1, 15) and transaction T2 at N2 that calls Decreas-
eStock(1, 10). If T1 and T2 are executed in parallel in optimistic mode, we get [1, 15,
10] at N1 and [1, 20, 10] at N2. Thus, the Stock replicas are inconsistent and require
reconciliation. After reconciliation, the tuple value will be [1, 5, 10]. Now, assume
query Q that checks for stocks to renew:

SELECT item FROM Stock WHERE quantity < threshold

Executing Q at either node N1 or N2 will not retrieve item 1. However, after recon-
ciliation (see Section 6.2), the final value of item 1 will be [1, 5, 10]. If the applica-
tion tolerates inconsistencies, it is aware that the results may have been incomplete

1 see www.tpc.org/tpcc

and can either reissue Q after some time necessary to reach the next reconciliation
step and produce a correct result, or execute Q at either node N1 or N2 and produce
the results with a bounded inaccuracy. In our example, item 1 would not be selected,
which may be acceptable for the user.
Assume now there is an integrity constraint C: (quantity > threshold*0.5) on table
Stock. The final result after reconciliation clearly violates the constraint for item 1.
However, this violation cannot be detected by either N1 after executing T1 or N2 af-
ter executing T2. There are two ways to solve this problem: either prevent T1 and T2
to be executed at different nodes in optimistic mode, or, at reconciliation time, vali-
date one transaction (e.g. with highest priority) and compensate, if possible, the other
one.

4.2. Execution rules

Application consistency requirements are expressed in terms of execution rules. Ex-
amples of execution rules are data-independency between transactions, integrity con-
straints [1], access control rules, etc. They may be stored explicitly by the system ad-
ministrator or inferred from the DBMS catalogs. They are primarily used by the
system administrator to place and replicate data in the cluster, similar to parallel
DBMS [12], [21]. They are also used by the system to decide at which nodes and un-
der which conditions a transaction can be executed.
Execution rules are stored in the directory (see Figure 4) . They are expressed in a
declarative language. Implicit rules refer to data already maintained by the system
(e.g. users authorizations). Hence, they include queries sent to the database catalog to
retrieve the data. Incoming transactions are managed by the policy manager. It re-
trieves execution rules associated with a given transaction and defines a run-time pol-
icy for the transaction. The run-time policy controls the execution of the transaction
at the required level of consistency. The couple (transaction, run-time policy) is called
transaction policy (TP) and is sent to the transaction router, which in turns computes
a cost function to elaborate the transaction execution plan (TEP) which includes the
best node among the candidates to perform the transaction with the appropriate mode.

Fig. 4. Transaction load balancer architecture

Transaction
Load Balancer

Incoming transaction T

Directory

TEP (T, Node, mode)

Policy Manager

Transaction Router
Transaction Policy

4.3. Defining execution rules

A transaction is defined by T = (P, param, user, add-req), where: P is the application
program of which T is an instance with param as parameters,
user is the user who sends the transaction, and add-req are additional execution re-
quirements for the transaction.
Execution rules use information about the transaction (the four elements above) and
the data stored in the database. In order to preserve application autonomy, execution
rules cannot be defined at a finer granularity than the program. Such information may
be already existing in the database catalog. Otherwise, it must be explicitly specified
or inferred from other information. Information related to a program includes its type
(query or update), its conflict classes [16], i.e. the data the program may read or write,
and its relative priority. If P is a query, the required precision of the results must be
specified. If P is an update, the directory must capture under which conditions (pa-
rameters) T is compensatable, the compensating transaction, whether T should be re-
tried and under which temporal conditions. For a couple (P, D), where D is a data in
the write conflict class of P, the administrator may specify max-change(P,D) which is
defined as follows. If D is an attribute, max-change states how much change (relative
or absolute) a transaction T(P) may do to D. If D is a table, max-change states how
many tuples T(P) may update. In our example, we have max-change(Decrease-
Stock(id,q), Stock.quantity) = q, max-change(Decrease-Stock(id,q), Stock) = 1.
This information is used to determine the run-time policy for transaction T and a par-
tially ordered set of candidate nodes at which the transaction may be executed. As
those nodes may be master, slave or multi-owner, the run-time policy may be differ-
ent for each type of node. The run-time policy is described as follows:
− type(T): denotes if T is a query or a (multi-owner) transaction.
− priority(T): the absolute priority level of the transaction, computed from the rela-

tive priorities of the user and the program, and the relative priority of the transac-
tion itself (included in the add-req parameter).

− compatible(T, T’): for each transaction T’, this vector stores whether T and T’ are
disjoint (resp. commutative). It is computed with compatibility information about
programs, conflict classes and effective parameters of the transactions. This infor-
mation is used by the load balancer to address transactions to different nodes in
non-isolated mode to the replication manager. In our example, it is obvious that T1
and T2 are not disjoint but commutative.

− query-mode(T): if T is a query, the query mode models the spatial and temporal
dimensions of the query quality requirements. For instance, a query may tolerate
an imprecision of 5% if the answer is delivered within 10 seconds, or 2% if deliv-
ered within one minute and may choose to abort if the response time is beyond 2
minutes. The query mode may include different spatial dimensions (absolute value,
number of updates) and give a trade-off between the temporal and spatial dimen-
sions (e.g. find the best precision within a given time or answer as soon as possible
within a given acceptable precision). In our example, we assume that Q accepts an
error of at most 5 items in the results.

− update-mode(T): the update mode models if a multi-owner transaction may be per-
formed in non-isolated mode on a master copy and compensated if the conflict

resolution fails, under which temporal conditions and with which compensating
transaction. The update mode also models under which conditions a transaction
should be automatically retried if aborted. In our example, neither T1 nor T2 are
compensatable since the Decrease-Stock procedure corresponds to a real with-
drawal of goods in stock.

− IC(T): the set of integrity constraints T is likely to violate. In our example, IC(T1)
= IC(T2) = {C}.

− max-change(T,D): for each data D, the maximum of change the transaction may
produce. In our example : max-change(T1, Stock.quantity) = 15, max-change(T2,
Stock.quantity) = 10, max-change(T1, Stock) = max-change(T2, Stock) = 1.

In our example, the following TPs would be produced :
− (T1, type = trans., priority = null, compatible = (), update-mode = no-compensate,

IC = (C), max-change = { (Stock.quantity, 15), (Stock, 1) });
− (T2, type = trans., priority = null, compatible = ((T1, commut.)), update-mode =

no-compensate, IC = (C), max-change = { (Stock.quantity, 10), (Stock, 1) });
− (Q, type=query, priority=null, compatible=((T1, no-commut), (T2, no-commut)),

query-mode = ((imprecision= 5 unit), (time-bound = no), (priority = time)).

5. Execution model

In this section, we present the execution model for our cluster system. The objective
is to increase load balancing based on execution rules. The problem can be reduced as
follows: given the cluster’s state (nodes load, running transactions, etc.), the cluster’s
data placement, and a transaction T with a number of consistency requirements,
choose one optimal node and execute T at that node. Choosing the optimal node re-
quires to first choose the replication mode, and then choose the candidate nodes
where to execute T with that replication mode. This yields a set of TEPs (one TEP per
candidate node) among which the best one can be selected based on a cost function.
In the rest of this section, we present the algorithm to produce candidates TEPs and
the way to select the best TEP and execute it. Finally, we illustrate the transaction
routing process on our running example.

5.1. Algorithm for choosing candidate TEPs

A TEP must specify whether preventive or optimistic replication is to be used. Pre-
ventive replication always preserves data consistency but may increase contention as
the degree of concurrency increases. On the other hand, optimistic replication per-
forms replica synchronization after the transaction commitment at specified times. If a
conflict occurs during synchronization, since the transaction has been committed, the
only solutions are to either compensate the transaction or notify the user or adminis-
trator. Thus, optimistic replication is best when T is disjoint from all the transactions
that accessed data in optimistic replication mode since the last synchronization point,
and when the chance of conflict is low.

The algorithm to choose the candidate TEPs proceeds as follows. The input is a trans-
action policy consisting of transaction T, conflict description (i.e. which transactions
commute or not with T), required precision (Imp value), and update description
(maxChange property). The output is a set of candidate TEPs, each specifying a node
N for executing T and how. The algorithm has two steps. First, it finds the candidate
TEPs with preventive replication to prevent the occurrence of non resolvable con-
flicts. This involves assessing the probability of conflict between T and all the com-
mitted transactions that have accessed data in optimistic mode since the last synchro-
nization point. In case of potential conflict at a node, a TEP with preventive
replication is built.
In case of non-conflicting transaction T (second step), the algorithm finds the candi-
date nodes with optimistic replication for data accessed by T. If the execution of T
requires accessing consistent data not available at a node, the algorithm adds the nec-
essary synchronization before processing T as follows. For each node N and each
data D, it computes the imprecision Imax(D,N) of processing T at N. Imax is the sum
of the maximum changes of all transactions t such that (i) updates of t and T are not
disjoint, (ii) t was processed at a node M ≠ N, (iii) t updates are not yet propagated to
N. If N can process T with the required consistency (i.e. Imax(D,N) < Imp(N) for all
D accessed by T) then a TEP (T,N) is built. Otherwise, the minimal synchronization
for N is specified and added to the TEP.

5.2. Choice of optimal node and transaction execution

Choosing the optimal node is an optimization problem with the objective of minimiz-
ing response time. The cost of a given TEP(T, N, sync) includes the synchronization
cost (for propagating all updates to N) and the processing cost of T at N. After an op-
timal node is selected, the transaction router triggers execution as follows. First, it
performs synchronization if necessary. If preventive replication has been selected, it
sends the transaction to the receiver module of the replication manager. Otherwise, it
sends the transaction directly to the DBMS. By default, the transaction router checks
precision requirements of T before processing it, assuming that they are still valid at
the end of T. This is not always true if a concurrent update occurs during the process-
ing of T. To ensure that the precision requirements of T are met at the end of T, a so-
lution is to process T by iteration until the precision requirements are reached. If the
precision requirements cannot be reached, T must be aborted. Otherwise, T can be
committed. Another solution is to forbid the execution of concurrent transactions that
would prevent T from reaching its consistency requirements.
Replica synchronization is delegated to the conflict manager which must also perform
conflict detection and resolution. To have detailed information about the current state
of replicas, the conflict manager reads the DBMS log (which keeps the history of up-
date operations) of all the nodes that have executed transactions since the last syn-
chronization point. Then, it resolves the conflicts based on priority, timestamps, or
user-defined reconciliation rules. If automatic conflict resolution is not possible, the
conflict manager sends a notification alert to the user or the administrator with details
about the conflicting operations.

5.3. Example of transaction routing

Let us now illustrate the previous algorithms on the transactions of the example of
Section 4.1 and show how TEPs are produced from the TP sent by the policy man-
ager. We assume that the TPs are received in order (T1, T2, Q), that data at nodes N1
and N2 is accessed in optimistic mode and that no other transaction is running and
conflicting with T1, T2 or Q. We first consider a case where integrity constraint C is
not taken into account. Then we show how C influences transaction routing.

Case 1 : no integrity constraint
Upon receiving TP (T1, type = trans., priority = null, compatible = (), update-mode =
no-compensate, IC = (C), max-change = {(Stock.quantity, 15), (Stock, 1)}), the trans-
action router does the following: (i) computes the set of candidate nodes {N1, N2};
(ii) detects that T1 is not conflicting with any running transaction, thus the candidate
nodes are {N1, N2}; (iii) sends T1 to the least loaded node (say N1) with T1 as
synchronization, which means that N1 must send T1 to the other node as a synchro-
nizing transaction; (iv) infers Imax(Stock, N1)=1, which means that at most one tuple
can be modified at N1 before synchronization.
Upon receiving TP (T2, type = trans., priority = null, compatible = ((T1, commut.)),
update-mode = no-compensate, IC = (C), max-change = {(Stock.quantity, 10),
(Stock, 1)}), the transaction router does the following : (i) computes the set of candi-
date nodes {N1, N2}; (ii) detects that T2 is conflicting with T1 but commutes with it;
(iii) sends T2 to the least loaded node (assume N2) with T2 as synchronization. As T1
and T2 are commutable, the order in which they will be executed at N1 (resp. N2)
does not matter; (iv) infers Imax(Stock, N2) = 1.
Upon receiving TP (Q, type=query., priority=null, compatible=((T1, no-commut.),
(T2, no-commut.)), query-mode=((imprecision = 5 unit), (time-bound=no), (priority =
time))), the transaction router does the following: (i) computes the set of candidate
nodes {N1, N2}; (ii) detects that Q is conflicting with both T1 and T2; (iii) from the
current values of Imax(Stock, N1) and Imax(Stock, N2), it computes that executing Q
at either N1 or N2 would yield a result with an imprecision of at most one unit. As the
query mode imposes an imprecision of at most 5 units, Q is sent to the least loaded
node (say N1). In the case the query mode of Q was not allowing any imprecision, the
router would have waited for the next synchronization of N1 and N2 to send Q.

Case 2 : with integrity constraint
The transaction router would detect that both T1 and T2 are likely to violate C and
are not compensatable. Sending T1 and T2 to different nodes could lead to the situa-
tion where C is not violated at either N1 or N2, but is violated during synchroniza-
tion. Since T1 and T2 are not compensatable, this situation is not acceptable and T2
must be sent to the same node as T1. Then we have Imax(Stock, N1) = 0 and
Imax(Stock, N2) = 2. Upon receiving Q, the transaction router may still choose the
least loaded node to execute it. Since the priority is given to time in the query mode,
the least loaded node is chosen: N2. Had the priority been given to precision, N1
would have been selected by the transaction router.

6. Implementation

In this section, we briefly describe our current implementation on a cluster of PCs
under Linux. We plan to first experiment our approach with the Oracle DBMS. How-
ever, we use standards like LDAP and JDBC, so the main part of our prototype is in-
dependent of the target environment.

6.1 Transaction load balancer

The transaction load balancer is implemented in Java. It acts as a JDBC server for the
application, preserving the application autonomy through the JDBC standard inter-
face. Inter-process communication between the application and the load balancer uses
Remote Method Invocation. To reduce contention, the load balancer takes advantage
of the multi-threading capabilities of Java based on the Linux’s native threads. For
each incoming transaction, the load balancer delegates transaction policy manage-
ment and transaction routing to a distinct thread. The transaction router sends transac-
tions for execution to DBMS nodes through JDBC drivers provided by the DBMS
vendors. To reduce latency when executing transactions, the transaction router main-
tains a pool of JDBC connections to all cluster nodes.

6.2 Conflict manager

The conflict manager is composed of three modules: (i) Log analyzer : reads the
DBMS log to capture the updates made by the local transactions; (ii) Conflict solver :
analyzes updates made on each node in order to detect and solve conflicts; (iii) Syn-
chronizer : manages synchronization processes.
At each node, the log manager runs as an independent process and reads the log to
detect updates performed by the local transactions. Those updates are sent to the con-
flict solver through time-stamped messages. The Oracle LogMiner tool can be used to
implement this module, and messages can be managed with the Advanced Queuing
tool. To illustrate the log analysis on our running example, the Stock update made by
transaction T1 is detected by the following query on the LogMiner schema:

SELECT scn, sql_redo, sql_undo
FROM v$logmnr_contents
WHERE seg_name='STOCK';

The conflict solver receives messages from the log analyzer, analyzes them to detect
conflicting writes (e.g. update/update or update/delete) on a same data. It then com-
putes how conflicts can be solved. In the best case, the conflict is solved by propagat-
ing updates from one node to the other ones. In the worst case, the conflict is solved
by choosing a transaction (the one with less priority) to be compensated. In both
cases, synchronizing transactions (propagation or compensation) are sent to the corre-
sponding nodes.

The synchronizer receives synchronizing transactions from the conflict solver. It may
execute them either periodically or upon receiving an order from the transaction load
balancer for an immediate synchronization.
The preventive replication manager is implemented as an enhanced version of a pre-
ceding implementation [11]. To implement reliable message broadcast, we plan to use
Ensemble [6], a group communication software package from Cornell University.

6.3 Directory

All information used for load balancing (execution rules, data placement, replica-
tion mode, cluster load) is stored in an LDAP compliant directory. The directory is
accessed through Java Directory Naming Interface (JDNI) which provides an LDAP
client implementation. Dynamic parameters measuring the cluster activity (load, re-
source usage) are stored in the directory. They are used for transaction routing. Val-
ues are updated periodically at each node. To measure DBMS node activity (e.g. CPU
usage and I/O made by all running transactions), we take advantage of dynamic views
maintained by Oracle.

6.4 Planned experimentations

The experimental cluster is composed of 5 nodes: 4 DBMS nodes + 1 application
node. At each DBMS node, there is a TPC-C database (500MB to 2GB) and TPC-C
stored procedures. The application node sends the transactional workload to the
transaction load balancer through TPC-C stored procedures. The cluster data place-
ment and replication (optimistic and preventive) may be configured depending on the
experiment goal. We plan to first measure the cluster performance (transactional
throughput) when the database is replicated on the 4 nodes and accessed in either
preventive or optimistic replication mode, by varying the update rates and the prob-
ability of conflict. We also plan to measure the scalability of our approach. We will
simply implement a logical 16 node cluster where each node runs 4 DBMS instances
to behave like a 4 node cluster. Based on the actual performance numbers with 4
nodes, this will yield confident results.

7. Comparison with related work

The main work related to ours is replication in either large-scale distributed systems
or cluster systems and advanced transaction models that trade consistency for im-
proved performance. In synchronous replication, 2PC can be used to update replicas.
However 2PC is blocking and the number of messages exchanged to control transac-
tion commitment is significant. It cannot scale up to cluster configurations to large
numbers of nodes. [7] addresses the replica consistency problem for synchronous rep-
lication. The number of messages exchanged is reduced compared to 2PC but the so-
lution is still blocking and it is not clear whether it scales up. In addition, synchro-
nous solutions cannot perform load balancing as we do. The common point with our

preventive approach is that we both consider the use of communication services to
guarantee that messages are delivered at each node in a specific order. [14] proposes a
refreshment algorithm that assures correctness for lazy-master configurations, but
does not consider multi-master configurations as we do here. Multi-master asynchro-
nous replication [20] has been successfully implemented in commercial systems such
as Oracle and Sybase. However, only the optimistic approach with conflict detection
and conciliation is supported.
There are interesting projects for replicated data management in cluster architectures.
The PowerDB project at ETH Zurich deals with the coordination of the cluster nodes
in order to provide a uniform and consistent view to the clients. Its solution fits well
for some kinds of applications, such as XML document management [5] or read-
intensive OLAP queries [18]. However, it does not address the problem of seamless
integration of legacy applications. The GMS project [22] uses global information to
optimize page replacement and prefetching decisions over the cluster. However, it
mainly addresses system-level or Internet applications (such as the Porcupine mail
server). Other projects are developed in the context of wide-area networks. The Trapp
project at Stanford University [8] addresses the problem of precision/performance
trade-off. However, the focus is on numeric computation of aggregation queries and
minimizing communication costs. The TACT middleware layer [25] implements the
continuous consistency model. Despite the fact that additional messages are used to
limit divergence, a substantial gain in performance may be obtained if users accept a
rather small error rate. However, read and write operations are mediated individually:
an operation is blocked until consistency requirements can be guaranteed. This im-
plies monitoring at the server level, and it is not clear if it allows installation of a leg-
acy application in an ASP cluster. In the quasi-copy caching approach [1], four con-
sistency conditions are defined. Quasi-copies can be seen as materialized views with
limited inconsistency. However, they only accept single master replication, which is
not adapted to our multi-master replication in a cluster system. Finally, epsilon trans-
actions [24] provide a nice theoretical framework for dealing with divergence control.
As in the continuous consistency model [25], it allows different consistency metrics
to give answers to queries with bounded imprecision. However, it requires to signifi-
cantly alter the concurrency control, since each lock request must read or write an ad-
ditional counter to decide whether the lock is compatible with the required level of
consistency. In summary, none of the existing approaches addresses the problems of
leaving databases and applications autonomous and unchanged as in our work.

8. Conclusion

In this paper, we proposed a new solution for parallel processing with autonomous
databases in a cluster system for ASP, using a replicated database organization. The
main idea is to allow the system administrator to control the consistency/performance
tradeoff when placing applications and databases onto cluster nodes. Application re-
quirements are captured through execution rules stored in a shared directory. They are
used at configuration time to choose the best organization for applications and data-

bases. They are also used at run-time to either prevent or tolerate copy inconsistency
in order to optimize load balancing.
Capitalizing on the work on relaxing database consistency for higher performance,
this paper makes several contributions in the context of cluster systems. First, we de-
fined a replicated database architecture for clusters systems that does not hurt applica-
tion and database autonomy. We use non intrusive techniques by intercepting DBMS
transaction calls or exploiting DBMS’s log interfaces.
Second, we proposed a new preventive replication method that provides strong con-
sistency without the overhead of synchronous replication by exploiting the cluster’s
high speed network. The preventive replication architecture maintains DBMS’s
autonomy and can support optimistic replication as well, with the addition of a con-
flict manager.
Third, we proposed a transaction load balancing architecture which can trade-off con-
sistency for performance using optimistic replication and execution rules. Support for
both preventive and optimistic replication provides a continuum from strong consis-
tency to weaker consistency with different cost/performance. Execution rules can be
defined at different levels of granularity (program or transaction, table or attribute or
tuple) to express application semantics. The distinction between Transaction Policy
(what we want) and Transaction Execution Plan (how we optimize it) eases the sys-
tem’s evolution (by changing rules) and load balancing decisions.
Finally, we presented an execution model to execute Transaction Execution Plans in a
way that optimizes load balancing. The optimal node is selected based on the replica-
tion mode that should be used and a cost function which estimates nodes’s load. We
also proposed a conflict manager architecture which exploits the database logs and
execution rules to perform replica reconciliation among heterogeneous databases.
We have started to implement the proposed solution on LIP6’s cluster architecture
running Linux and Oracle 8i. We are experimenting with the TPC-C benchmark to
assess the cost/performance of preventive replication and optimistic replication (with
relaxed consistency) under various workloads. We will also develop a simulation
model, calibrated with our implementation, to study how our solution scales up to
very large cluster configurations.

References

[1] R. Alonso, D. Barbará, H. Garcia-Molina. Data Caching Issues in an Information Re-
trieval System. ACM Transactions on Database Systems (TODS), 15(3), 1990.
[2] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, P. O'Neil. A Critique of ANSI
SQL Isolation Levels. In ACM SIGMOD Int. Conf. on Management of Data, 1995.
[3] A. Doucet, S. Gançarski, C. León, M. Rukoz. Checking Integrity Constraints in Multi-
database Systems with Nested Transactions. In Int. Conf. On Cooperative Information Systems
(CoopIS), 2001.
[4] S. Gançarski, H. Naacke, P. Valduriez. Load Balancing of Autonomous Applications
and Databases in a Cluster System. In 4th Workshop on Distributed Data and Structure
(WDAS), 2002.

[5] T. Grabs, K. Böhm, H.-J. Schek. Scalable Distributed Query and Update Service Im-
plementations for XML Document Elements. In IEEE RIDE Int. Workshop on Document Man-
agement for Data Intensive Business and Scientific Applications, 2001.
[6] M. Hayden. The Ensemble System. Technical Report, Departement of Computer Sci-
ence, Cornell University, TR-98-1662, 1998.
[7] B. Kemme, G. Alonso. Don’t be lazy be consistent : Postgres-R, A new way to imple-
ment Database Replication. In Int. Conf on Very Large Databases (VLDB), 2000.
[8] C. Olston, J. Widom. Offering a Precision-Performance Tradeoff for Aggregation Que-
ries over Replicated Data. In Int. Conf. on Very Large Databases (VLDB), 2000.
[9] T. Özsu, P. Valduriez. Principles of Distributed Database Systems. Prentice Hall, 2nd
edition, 1999.
[10] T. Özsu, P. Valduriez. Distributed and Parallel Database Systems - Technology and cur-
rent state-of-the-art. ACM Computing Surveys, 28(1), 1996.
[11] E. Pacitti. Improving Data Freshness in Replicated Databases. PhD Thesis, INRIA-RR
3617, 1999.
[12] E. Pacitti, O. Dedieu. Algorithms for Optimistic Replication on the Web. Journal of the
Brazilian Computing Society, 2002, to appear.
[13] E. Pacitti, P. Minet, E. Simon. Fast Algorithms for Maintaining Replica Consistency in
Lazy Master Replicated Databases. In Int. Conf. on Very Large Databases (VLDB), 1999.
[14] E. Pacitti, P. Minet, E. Simon. Replica Consistency in Lazy Master Replicated Data-
bases. Distributed and Parallel Databases, 9(3), 2001.
[15] E. Pacitti. Preventive Lazy Replication in Cluster Systems. Technical Report RR-2002-
01, CRIP5, University Paris 5, 2002.
[16] M. Patiño-Martínez, R. Jiménez-Peris, B. Kemme, G. Alonso. Scalable Replication in
Database Clusters. In Int. Conf. on Distributed Computing (DISC), 2000.
[17] D. Powel et al. Group communication (special issue). Communication of the ACM,
39(4), 1996.
[18] U. Röhm, K. Böhm, H.-J. Schek. Cache-Aware Query Routing in a Cluster of Data-
bases. Int. Conf. on Data Engineering (ICDE), 2001.
[19] A. Sheth, M. Rusinkiewicz. Management of Interdependent Data: Specifying Depend-
ency and Consistency Requirements. Workshop on the Management of Replicated Data, 1990.
[20] D. Stacey. Replication: DB2, Oracle, or Sybase. Database Programming & Design.
7(12), 1994.
[21] P. Valduriez. Parallel Database Systems: open problems and new issues. Int. Journal on
Distributed and Parallel Databases, 1(2), 1993.
[22] G. Voelker et al. Implementing Cooperative Prefetching and Caching in a Global Me-
mory System.In ACM Sigmetrics Conf. on Performance Measurement, Modeling, and Evalua-
tion, 1998.
[23] G. Weikum. Principles and Realization Strategies of Multilevel Transaction Manage-
ment. ACM Transactions on Database Systems (TODS), 16(1), 1991.
[24] K. L. Wu, P. S Yu, C. Pu. Divergence Control for Epsilon-Serializability. In 8th Int.
Conf. on Data Engineering (ICDE), 1992.
[25] H. Yu, A. Vahdat. Efficient Numerical Error Bounding for Replicated Network Servi-
ces. In Int. Conf. On Very Large Databases (VLDB), 2000.

