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Abstract. We consider the use of a cluster system for Application Service Pro-
vider (ASP). In the ASP context, hosted applications and databases can be up-
date-intensive and must remain autonomous. In this paper, we propose a new 
solution for parallel processing with autonomous databases, using a replicated 
database organization. The main idea is to allow the system administrator to 
control the tradeoff between database consistency and application performance. 
Application requirements are captured through execution rules stored in a 
shared directory. They are used (at run time) to allocate cluster nodes to user 
requests in a way that optimizes load balancing while satisfying application 
consistency requirements. We also propose a new preventive replication 
method and a transaction load balancing architecture which can trade-off con-
sistency for performance using execution rules. Finally, we discuss the on-
going implementation at LIP6 using a Linux cluster running Oracle 8i. 

1. Introduction 

Clusters of PC servers now provide a cheap alternative to tightly-coupled multiproc-
essors such as Symmetric Multiprocessor (SMP) or Non Uniform Memory Architec-
ture (NUMA). They make new businesses like Application Service Provider (ASP) 
economically viable. In the ASP model, customers’ applications and databases (in-
cluding data and DBMS) are hosted at the provider site and need be available, typi-
cally through the Internet, as efficiently as if they were local to the customer site. 
Thus, the challenge for a provider is to fully exploit the cluster’s parallelism and load 
balancing capabilities to obtain a good cost/performance ratio. The typical solution to 
obtain good load balancing in cluster architectures is to replicate applications and 
data at different nodes so that users can be served by any of the nodes depending on 
the current load. This also provides high-availability since, in the event of a node 
failure, other nodes can still do the work. This solution has been successfully used by 
Web sites such as search engines using high-volume server farms (e.g., Google). 
However, Web sites are typically read-intensive which makes it easier to exploit par-
allelism. 



In the ASP context, the problem is far more difficult. First, applications can be up-
date-intensive. Second, applications and databases must remain autonomous so they 
can be subject to definition changes to accommodate customer requirements. Repli-
cating databases at several nodes, so they can be accessed by different users through 
the same or different applications in parallel, can create consistency problems  [15], 
 [9]. For instance, two users at different nodes could generate conflicting updates to 
the same data, thereby producing an inconsistent database. This is because consis-
tency control is done at each node through its local DBMS. There are two main solu-
tions readily available to enforce global consistency. One is to use a transaction proc-
essing monitor to control the access to replicated data. However, this requires 
significant rewriting of the applications and may hurt transaction throughput. A more 
efficient solution is to use a parallel DBMS such as Oracle Rapid Application Cluster 
or DB2 Parallel Edition. Parallel DBMS typically provide a shared disk abstraction to 
the applications  [21] so that parallelism can be automatically inferred. But this re-
quires heavy migration to the parallel DBMS and hurts database autonomy. 
Ideally, applications and databases should remain unchanged when moved to the pro-
vider site’s cluster. In this paper, we propose a new solution for load balancing of 
autonomous applications and databases which addresses this requirement. This work 
is done in the context of the Leg@Net project1 sponsored by the RNTL between 
LIP6, Prologue Software and ASPLine, whose objective is to demonstrate the viabil-
ity of the ASP model for pharmacy applications in France. Our solution exploits a 
replicated database organization. The main idea is to allow the system administrator 
to control the database consistency/performance tradeoff when placing applications 
and databases onto cluster nodes. Databases and applications can be replicated at 
multiple nodes to obtain good load balancing. Application requirements are captured 
(at compile time) through execution rules stored in a shared directory used (at run 
time) to allocate cluster nodes to user requests. Depending on the users’ requirements, 
we can control database consistency at the cluster level. For instance, if an application 
is read-only or the required consistency is weak, then it is easy to execute multiple re-
quests in parallel at different nodes. If, instead, an application is update-intensive and 
requires strong consistency (e.g. integrity constraints satisfaction), then an extreme 
solution is to run it at a single node and trade performance for consistency. Or, if we 
want both consistency and replication (e.g. for high availability), another extreme so-
lution is synchronous replication with 2 phase commit (2PC)  [9] for refreshing repli-
cas. However, 2PC is both costly in terms of messages and blocking (failure of the 
coordinator cannot be terminated independently by the participants). 
There are cases where copy consistency can be relaxed. With optimistic replication 
 [12], transactions are locally committed and different replicas may get different val-
ues. Replica divergence remains until reconciliation. Meanwhile, the divergence must 
be controlled for at least two reasons. First, since synchronization consists in produc-
ing a single history from several diverging ones, the higher the divergence is, the 
more difficult the reconciliation. The second reason is that read-only applications do 
not always require to read perfectly consistent data and may tolerate some inconsis-
tency. In this case, inconsistency reflects a divergence between the value actually read 
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and the value that should have been read in ACID mode. Non-isolated queries are 
also useful in non replicated environments  [2]. Specification of inconsistency for que-
ries has been widely studied in the literature, and may be divided in two dimensions, 
temporal and spatial  [19]. An example of temporal dimension is found in quasi-copies 
 [1], where a cached (image) copy may be read-accessed according to temporal condi-
tions, such as an allowable delay between the last update of the copy and the last up-
date of the master copy. The spatial dimension consists of allowing a given "quantity 
of changes" between the values read-accessed and the effective values stored at the 
same time. This quantity of changes, referred to as import-limit in epsilon transac-
tions  [24], may be for instance the number of data items changed, the number of up-
dates performed or the absolute value of the update. In the continuous consistency 
model  [25], both temporal dimension (staleness) and spatial dimension (numerical er-
ror and order error) are controlled. Each node propagates its writes by either pull or 
push access to other nodes, so that each node maintains a predefined level of consis-
tency for each dimension. Then each query can be sent to a node having a satisfying 
level of consistency (w.r.t. the query) in order to optimize load balancing. 
In this paper, we strive to capitalize on the work on relaxing database consistency for 
higher performance which we apply in the context of cluster systems. We make the 
following contributions: (i) a replicated database architecture for cluster systems that 
does not hurt application and database autonomy, using non intrusive database tech-
niques, i.e. techniques that work independently of any DBMS; (ii) a new preventive 
replication method that provides strong consistency without the overhead of synchro-
nous replication, by exploiting the cluster’s high speed network; (iii) a transaction 
load balancing architecture which can trade-off consistency for performance using 
optimistic replication and execution rules; (iv) a conflict manager architecture which 
exploits the database logs and execution rules to perform replica reconciliation among 
heterogeneous databases. 
This paper is organized as follows. Section 2 introduces our cluster system architec-
ture with database replication. Section 3 presents our replication model with both pre-
ventive and optimistic replication. Section 4 describes the way we can capture and 
exploit execution rules about applications. Section 5 describes our execution model 
which uses these rules to perform load balancing and manage global consistency. 
Section 6 briefly describes our on-going implementation. .Section 7 compares our ap-
proach with related work. Section 8 concludes. 

2. Cluster architecture 

In this section, we introduce the architecture for processing user requests coming, for 
instance, from the Internet, into our cluster system and discuss our solution for plac-
ing applications, DBMS and databases in the system. 
The general processing of a user request is as follows. First, the request is authenti-
cated and authorized using a directory which captures information about users and 
applications. The directory is also used to route requests to nodes. If successful, the 
user gets a connection to the application (possibly after instantiation) at some node 



which can then connect to a DBMS at some, possibly different, node and issue que-
ries for retrieving and updating database data. 
We consider a cluster system with similar nodes, each having one or more processors, 
main memory (RAM) and disk. Similar to multiprocessors, various cluster system ar-
chitectures are possible: shared-disk, shared-cache and shared-nothing  [10]. Shared-
disk and shared-cache require a special interconnect that provide a shared space to all 
nodes with provision for cache coherence using either hardware or software. Using 
shared disk or shared cache requires a specific DBMS implementation like Oracle 
Rapid Application Cluster or DB2 Parallel Edition. Shared-nothing is the only archi-
tecture that supports our autonomy requirements without the additional cost of a spe-
cial interconnect. Thus, we strive to exploit a shared-nothing architecture.  
There are various ways to organize the applications, DBMS and databases in our 
shared-nothing cluster system. We assume applications typically written in a pro-
gramming language like C, C++ or Java making DBMS calls to stored procedures us-
ing a standard interface like ODBC or JDBC. Stored procedures are in SQL, PSM 
(SQL3's Persistent Stored Modules) or any proprietary language like Oracle's 
PL/SQL or Microsoft's TSQL. In  [4], we presented and discussed three main organi-
zations to obtain parallelism. The first one is client-server DBMS connection whereby 
a client application at one node connects to a remote DBMS at another node (where 
the same application can also run). The second organization is peer-to-peer DBMS 
connection whereby a client application at one node connects to a local DBMS which 
transparently accesses the same DBMS at another node using a distributed database 
capability. The third organization is replicated database whereby a database and 
DBMS is replicated across several nodes. These three organizations are interesting al-
ternatives which can be combined to better control the consistency/performance 
trade-off of various applications and optimize load balancing. For instance, an appli-
cation at one node could do client-server connection to one or more replicated data-
bases, the choice of the replicated database being made depending on the load. 
In this paper, we focus on the replicated database organization which is the most gen-
eral as it provides for both application and database access parallelism. We use multi-
master replication  [15] whereby each (master) node can perform updates to the rep-
lica it holds. However, conflicting updates to the database from two different nodes 
can yield to consistency problems (e.g. the same data get different values in different 
replicas). The classical solution to this problem is optimistic and based on conflict de-
tection and resolution. However, there is also a preventive solution which we propose 
and avoids conflicts at the expense of a forced waiting time for transactions. Thus, we 
support both replication schemes to provide a continuum from strong consistency 
with preventive replication to weaker consistency with optimistic replication. 
Based on these choices, we propose the cluster system architecture in Figure 1 which 
does not hurt application and database autonomy. Applications, databases and DBMS 
are replicated at different nodes without any change by the cluster administrator. Be-
sides the directory, we add 4 new modules which can be implemented at any node. 
The application load balancer simply routes user requests to application nodes using 
a traditional load balancing algorithm. The transaction load balancer intercepts 
DBMS procedure calls (in ODBC or JDBC) from the applications, generates a trans-
action execution plan (TEP), based on application and user consistency requirements 



obtained from the directory. For instance, it decides on the use of preventive or opti-
mistic replication for a transaction. Finally, it triggers transaction execution (to exe-
cute stored procedures) at the best nodes, using run-time information on nodes' load. 
The preventive replication manager orders transactions at each node in a way that 
prevents conflicts and generates refresh transactions to update replicas. The conflict 
manager periodically detects conflicts introduced on replicas by transactions run in 
optimistic mode using the DBMS logs and solves them using information in the di-
rectory. 
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Fig. 1. Cluster system architecture 

3. Replication Model 

In our context, replication of data at different cluster nodes is a major way to increase 
parallelism. However, updates to replicated data need be propagated efficiently to all 
other copies. A general solution widely used in database systems is lazy replication. 
In this section, we discuss the value of lazy replication in cluster systems, and pro-
pose a new multi-master lazy replication scheme with conflict prevention and its ar-
chitecture. Our scheme can also reduce to the classical multi-master replication 
scheme with conflict resolution. 

3.1. Lazy replication 

With lazy replication, a transaction can commit after updating a replica at some node. 
After the transaction commits, the updates are propagated towards the other replicas, 
which are then updated in separate transactions. Unlike synchronous replication (with 
2 phase commit), updating transactions need not wait that mutual copy consistency be 
enforced. Thus lazy replication does not block and scales up much better compared 
with the synchronous approach. This performance advantage has made lazy replica-
tion widely accepted in practice, e.g. in data warehousing and collaborative applica-
tions on the Web  [12]. 



Following  [13]  [14], we characterize a lazy replication scheme using: ownership, con-
figuration, transaction model propagation, refreshment. The ownership parameter de-
fines the permissions for updating replicas. If a replica R is updateable, it is called a 
primary copy, otherwise it is called a secondary copy, noted r. A node M is said to be 
a master node if it only stores primary copies. A node S is said to be a slave node if it 
only stores secondary copies. In addition, if a replica copy R is updateable by several 
master nodes then it is said to be a multi-owner copy. A node MO is said to be a 
multi-owner master node if it stores only multi-owner copies. For cluster computing 
we only consider master, slave and multi-owner master nodes. A master node M or a 
multi-owner node MO is said to be a master of a slave node S iff there exists a secon-
dary copy of r in S of a primary copy R in M or MO. We also say that S is a slave of 
M or MO.  
The transaction model defines the properties of the transactions that access replicas at 
each node. Moreover, we assume that, once a transaction is submitted for execution 
to a local transaction manager at a node, all conflicts are handled by the local concur-
rency control protocol. In our framework, we fix the properties of the transactions. 
We focus on four types of transactions that read or write replicas: update transactions, 
multi-owner transactions, refresh transactions and queries. An update transaction T 
updates a set of primary copies. A refresh transaction, RT, is associated with an up-
date transaction T, and is made of the sequence of write operations performed by T 
used to refresh secondary copies. We use the term multi-owner transaction, noted 
MOT, to refer to a transaction that updates a multi-owner copy. Finally, a query Q, 
consists of a sequence of read operations on primary or secondary copies. 
The propagation parameter defines when the updates to a primary copy or multi-
owner copy R must be multicast towards the slaves of R or all owners of R. The mul-
ticast protocol is assumed to be reliable and preserve the global FIFO order  [17]. We 
focus on deferred update propagation: the sequence of operations of each refresh 
transaction associated with an update transaction T is multicast to the appropriate 
nodes within a single message M, after the commitment of T.  
The refreshment parameter defines when should a MOT or RT be triggered and the 
commit order of these transactions. We consider the deferred triggering mode. With a 
deferred-immediate strategy, a RT or MOT is submitted for execution as soon as the 
corresponding message M is received by the node. 

3.2. Managing replica consistency 

Depending on which node is allowed user updates to a replica, several replication 
configurations can be obtained. The lazy master (or asymmetric) configuration allows 
only one node, called master node, to perform user updates on the replica; the other 
nodes can only perform reads. Figure 2(a) shows an example of a lazy master bowtie 
configuration in which there are two nodes storing primary copies R and S and their 
secondary copies r1, s1 and r2, s2 at the slave nodes. The multi-master (or symmetric) 
configuration allows all nodes storing a replica to be masters. Figure 2(b) shows an 
example of a multi-master configuration in which all master nodes store a primary 
copy of S and R. There are also hybrid configurations.  



Different configurations yield different performance/consistency trade-offs. For in-
stance a lazy master configuration such as bowtie is well suited for read intensive 
workloads because reading secondary copies does not conflict with any update trans-
action. In addition, since the updates are rare, the results of a query on a secondary 
copy r at time t would be, in most cases, the same as reading the corresponding pri-
mary copy R at time t. Thus, the choice of a configuration should be based on the 
knowledge of the transaction workload. For update-intensive workloads, the multi-
master configuration seems best as the load of update transactions can be distributed 
among several nodes. 

R r1, s1

S r2, s2

S1, R1 S3, R3

S2, R2 S4, R4

a) bowtie b) multi-master

 
Fig. 2. Replication configurations 

For all configurations, the problem is to manage data consistency. That is, any node 
that holds a replica should always see the same sequence of updates to this replica. 
Consistency management for lazy master has been addressed in  [14]. The problem is 
more difficult with multi-master where independent transactions can update the same 
replica at different master nodes. A conflict arises whenever two or more transactions 
update the same object. The main solution used by replication products  [20] is to tol-
erate and resolve conflicts. After the commitment of a transaction, a conflict detection 
mechanism checks for conflicts which are resolved by undoing and redoing transac-
tions using a log history. During the time interval between the commitment of a trans-
action and conflict resolution, users may read and write inconsistent data. This solu-
tion is optimistic and works best with few conflicts. However, it may introduce 
inconsistencies. 
We propose an alternative, new solution which prevents conflicts and thus avoids in-
consistency. A detailed presentation of the preventive replication scheme and its algo-
rithms is in  [15]. With this preventive solution, each transaction T is associated with a 
chronological timestamp value, and a delay d is introduced before each transaction 
submission. This delay corresponds to the maximum amount of time to propagate a 
message between any two nodes. During this delay, all transactions received are or-
dered following the timestamp value. After the delay has expired, all transactions 
younger than T are guaranteed to be received. Therefore, transactions at each node 
are executed following the same timestamp order and consistency is assured. 
This preventive approach imposes waiting a specific delay d, before the execution of 
multi-owner and refresh transactions. Our cluster computing context is characterized 
by short distance, high performance inter-process communication where error rates 
are typically low. Thus, d can be negligible to attain strong consistency. On the other 
hand, the optimistic approach avoids the waiting time d but must deal with inconsis-
tency management. However, there are many applications that tolerate reading incon-
sistent data. Therefore, we decided to support both replication schemes to provide a 
continuum from strong consistency with preventive replication to weaker consistency 
with optimistic replication.  



3.3. Preventive Replication Manager Architecture 

This section presents the system architecture of a master, multi-master or slave node 
with conflict prevention. This architecture can be easily adapted to the simpler opti-
mistic approach, with the addition of a conflict manager (see Section 5). To maintain 
the autonomy of each node, we assume that six components are added to a regular da-
tabase system in order to support lazy replication (see Figure 3).  
The Replica Interface manages the incoming multi-owner transaction submission. 
The Receiver and Propagator implement reception and propagation of messages, re-
spectively. The Refresher implements a refreshment algorithm. Finally, the Deliverer 
manages the submission of multi-owner transactions and refresh transactions to the 
local transaction manager. 

Fig. 3. Master, Multi-owner or Slave node Architecture 

The Log Monitor uses log sniffing to extract the changes to primary copies by con-
tinuously reading the content of a local History Log (noted H). The sequence of up-
dates of an update transaction T and its timestamp C are read from H and written to 
the Input Log, that is used by the Propagator. 
Next, multi-owner transactions are submitted through the Replica Interface. The ap-
plication program calls the Replica Interface passing as parameter the multi-owner 
transaction MOT. The Replica Interface then establishes a timestamp value C for 
MOT. Afterwards, the sequence of operations of MOT is written into the Owner Log 
followed by C. Whenever the multi-owner transaction commits, the Deliverer notifies 
the event Replica Interface. After MOT commitment, the replica interface ends its 
processing and the application program continues its next execution step.  
The Receiver implements message reception. Messages are received and stored in a 
Reception Log. The receiver then reads messages from this log and stores each mes-
sage in an appropriate FIFO pending queue. The content of the queues form the input 
to the Refresher. The Propagator reads continuously the contents of the Owner and 
Input Log and for each sequence of updates followed by C read, it constructs a mes-
sage M. Messages are multicast through the network interface. 
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The Refresher implements the refreshment algorithm. It reads the contents of a set of 
pending queues. Based on its refreshment parameters, it submits refresh transactions 
and multi-owner update transactions by inserting them into the running queue. The 
running queue contains all ordered transactions not yet entirely executed. Finally, the 
Deliverer submits refresh and multi-owner transactions to the local transaction man-
ager. It reads the contents of the running queue in a FIFO order and submits each 
write operation as part of a transaction to the local transaction manager. Whenever a 
multi-owner transaction is committed, it notifies the event to the Replica Interface. 
 

4. Trading consistency for load balancing 

The replicated database organization may increase transaction parallelism. For sim-
plicity, we focus on inter-transaction parallelism, whereby transactions updating the 
same database are dynamically allocated to different master nodes. There are two im-
portant decisions to make for an incoming transaction: choosing the node to run it, 
which depends on the current load of the cluster, and the replication mode (preventive 
or optimistic) which depends on the degree of consistency desired. In this section, we 
show how we can capture and use execution rules about applications in order to ob-
tain transaction parallelism, by exploiting the optimistic replication mode. 

4.1 Motivating example 

To illustrate how we can tolerate inconsistencies, we consider a very simple example 
adapted from the TPC-C benchmark1. Similar to the Pharmacy applications in our 
Leg@net project, TPC-C deals with customers that order products whose stock must 
be controlled by a threshold value. We focus on table Stock(item, quantity, thresh-
old). Procedure DecreaseStock decreases the stock quantity of item id by q. 

procedure DecreaseStock(id, q) : 
   UPDATE Stock SET quantity = quantity – q WHERE item = id; 

Let us consider a Stock tuple [1, 30, 10] replicated at nodes N1 and N2, transaction 
T1 at N1 that calls DecreaseStock(1, 15) and transaction T2 at N2 that calls Decreas-
eStock(1, 10). If T1 and T2 are executed in parallel in optimistic mode, we get [1, 15,  
10] at N1 and [1, 20, 10] at N2. Thus, the Stock replicas are inconsistent and require 
reconciliation. After reconciliation, the tuple value will be [1, 5, 10]. Now, assume 
query Q that checks for stocks to renew: 

SELECT item FROM Stock WHERE quantity < threshold 

Executing Q at either node N1 or N2 will not retrieve item 1. However, after recon-
ciliation (see Section 6.2), the final value of item 1 will be [1, 5, 10]. If the applica-
tion tolerates inconsistencies, it is aware that the results may have been incomplete 
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and can either reissue Q after some time necessary to reach the next reconciliation 
step and produce a correct result, or execute Q at either node N1 or N2 and produce 
the results with a bounded inaccuracy. In our example, item 1 would not be selected, 
which may be acceptable for the user. 
Assume now there is an integrity constraint C: (quantity > threshold*0.5) on table 
Stock. The final result after reconciliation clearly violates the constraint for item 1. 
However, this violation cannot be detected by either N1 after executing T1 or N2 af-
ter executing T2. There are two ways to solve this problem: either prevent T1 and T2 
to be executed at different nodes in optimistic mode, or, at reconciliation time, vali-
date one transaction (e.g. with highest priority) and compensate, if possible, the other 
one. 

4.2. Execution rules 

Application consistency requirements are expressed in terms of execution rules. Ex-
amples of execution rules are data-independency between transactions, integrity con-
straints  [1], access control rules, etc. They may be stored explicitly by the system ad-
ministrator or inferred from the DBMS catalogs. They are primarily used by the 
system administrator to place and replicate data in the cluster, similar to parallel 
DBMS  [12],  [21]. They are also used by the system to decide at which nodes and un-
der which conditions a transaction can be executed. 
Execution rules  are stored in the directory (see Figure 4) . They are expressed in a 
declarative language. Implicit rules refer to data already maintained by the system 
(e.g. users authorizations). Hence, they include queries sent to the database catalog to 
retrieve the data. Incoming transactions are managed by the policy manager. It re-
trieves execution rules associated with a given transaction and defines a run-time pol-
icy for the transaction. The run-time policy controls the execution of the transaction 
at the required level of consistency. The couple (transaction, run-time policy) is called 
transaction policy (TP) and is sent to the transaction router, which in turns computes 
a cost function to elaborate the transaction execution plan (TEP) which includes the 
best node among the candidates to perform the transaction with the appropriate mode. 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Transaction load balancer architecture 
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4.3. Defining execution rules 

A transaction is defined by T = (P, param, user, add-req), where: P is the application 
program of which T is an instance with param as parameters, 
user is the user who sends the transaction, and add-req are additional execution re-
quirements for the transaction. 
Execution rules use information about the transaction (the four elements above) and 
the data stored in the database. In order to preserve application autonomy, execution 
rules cannot be defined at a finer granularity than the program. Such information may 
be already existing in the database catalog. Otherwise, it must be explicitly specified 
or inferred from other information. Information related to a program includes its type 
(query or update), its conflict classes  [16], i.e. the data the program may read or write, 
and its relative priority. If P is a query, the required precision of the results must be 
specified. If P is an update, the directory must capture under which conditions (pa-
rameters) T is compensatable, the compensating transaction, whether T should be re-
tried and under which temporal conditions. For a couple (P, D), where D is a data in 
the write conflict class of P, the administrator may specify max-change(P,D) which is 
defined as follows. If D is an attribute, max-change states how much change (relative 
or absolute) a transaction T(P) may do to D. If D is a table, max-change states how 
many tuples T(P) may update. In our example, we have max-change(Decrease-
Stock(id,q), Stock.quantity) = q, max-change(Decrease-Stock(id,q), Stock) = 1.  
This information is used to determine the run-time policy for  transaction T and a par-
tially ordered set of candidate nodes at which the transaction may be executed. As 
those nodes may be master, slave or multi-owner, the run-time policy may be differ-
ent for each type of node. The run-time policy is described as follows: 
− type(T): denotes if T is a query or a (multi-owner) transaction. 
− priority(T): the absolute priority level of the transaction, computed from the rela-

tive priorities of the user and the program, and the relative priority of the transac-
tion itself (included in the add-req parameter). 

− compatible(T, T’): for each transaction T’, this vector stores whether T and T’ are 
disjoint (resp. commutative). It is computed with compatibility information about 
programs, conflict classes and effective parameters of the transactions. This infor-
mation is used by the load balancer to address transactions to different nodes in 
non-isolated mode to the replication manager. In our example, it is obvious that T1 
and T2 are not disjoint but commutative. 

− query-mode(T): if T is a query, the query mode models the spatial and temporal 
dimensions of the query quality requirements. For instance, a query may tolerate 
an imprecision of 5% if the answer is delivered within 10 seconds, or 2% if deliv-
ered within one minute and may choose to abort if the response time is beyond 2 
minutes. The query mode may include different spatial dimensions (absolute value, 
number of updates) and give a trade-off between the temporal and spatial dimen-
sions (e.g. find the best precision within a given time or answer as soon as possible 
within a given acceptable precision). In our example, we assume that Q accepts an 
error of at most 5 items in the results. 

−  update-mode(T): the update mode models if a multi-owner transaction may be per-
formed in non-isolated mode on a master copy and compensated if the conflict 



resolution fails, under which temporal conditions and with which compensating 
transaction. The update mode also models under which conditions a transaction 
should be automatically retried if aborted. In our example, neither T1 nor T2 are 
compensatable since the Decrease-Stock procedure corresponds to a real with-
drawal of goods in stock. 

− IC(T): the set of integrity constraints T is likely to violate. In our example, IC(T1) 
= IC(T2) = {C}. 

− max-change(T,D): for each data D, the maximum of change the transaction may 
produce. In our example : max-change(T1, Stock.quantity) = 15, max-change(T2, 
Stock.quantity) = 10, max-change(T1, Stock) = max-change(T2, Stock) = 1. 

In our example, the following TPs would be produced : 
− (T1, type = trans., priority = null, compatible = (), update-mode = no-compensate, 

IC = (C), max-change = { (Stock.quantity, 15), (Stock, 1) } ); 
− (T2, type = trans., priority = null, compatible = ( (T1, commut.) ), update-mode = 

no-compensate, IC = (C), max-change = { (Stock.quantity, 10), (Stock, 1) } ); 
− (Q, type=query, priority=null, compatible=((T1, no-commut), (T2, no-commut)), 

query-mode = ((imprecision= 5 unit), (time-bound = no), (priority = time)). 

5. Execution model  

In this section, we present the execution model for our cluster system. The objective 
is to increase load balancing based on execution rules. The problem can be reduced as 
follows: given the cluster’s state (nodes load, running transactions, etc.), the cluster’s 
data placement, and a transaction T with a number of consistency requirements, 
choose one optimal node and execute T at that node. Choosing the optimal node re-
quires to first choose the replication mode, and then choose the candidate nodes 
where to execute T with that replication mode. This yields a set of TEPs (one TEP per 
candidate node) among which the best one can be selected based on a cost function. 
In the rest of this section, we present the algorithm to produce candidates TEPs and 
the way to select the best TEP and execute it. Finally, we illustrate the transaction 
routing process on our running example. 

5.1. Algorithm for choosing candidate TEPs  

A TEP must specify whether preventive or optimistic replication is to be used. Pre-
ventive replication always preserves data consistency but may increase contention as 
the degree of concurrency increases. On the other hand, optimistic replication per-
forms replica synchronization after the transaction commitment at specified times. If a 
conflict occurs during synchronization, since the transaction has been committed, the 
only solutions are to either compensate the transaction or notify the user or adminis-
trator. Thus, optimistic replication is best when T is disjoint from all the transactions 
that accessed data in optimistic replication mode since the last synchronization point, 
and when the chance of conflict is low. 



The algorithm to choose the candidate TEPs proceeds as follows. The input is a trans-
action policy consisting of transaction T, conflict description (i.e. which transactions 
commute or not with T), required precision (Imp value), and update description 
(maxChange property). The output is a set of candidate TEPs, each specifying a node 
N for executing T and how. The algorithm has two steps. First, it finds the candidate 
TEPs with preventive replication to prevent the occurrence of non resolvable con-
flicts. This involves assessing the probability of conflict between T and all the com-
mitted transactions that have accessed data in optimistic mode since the last synchro-
nization point. In case of potential conflict at a node, a TEP with preventive 
replication is built. 
In case of non-conflicting transaction T (second step), the algorithm finds the candi-
date nodes with optimistic replication for data accessed by T. If the execution of T 
requires accessing consistent data not available at a node, the algorithm adds the nec-
essary synchronization before processing T as follows. For each node N and each 
data D, it computes the imprecision Imax(D,N) of processing T at N. Imax is the sum 
of the maximum changes of all transactions t such that (i) updates of t and T are not 
disjoint, (ii) t was processed at a node M ≠ N, (iii) t updates are not yet propagated to 
N. If N can process T with the required consistency (i.e. Imax(D,N) < Imp(N) for all 
D accessed by T) then a TEP (T,N) is built. Otherwise, the minimal synchronization 
for N is specified and added to the TEP. 

5.2. Choice of optimal node and transaction execution 

Choosing the optimal node is an optimization problem with the objective of minimiz-
ing response time. The cost of a given TEP(T, N, sync) includes the synchronization 
cost (for propagating all updates to N) and the processing cost of T at N. After an op-
timal node is selected, the transaction router triggers execution as follows. First, it 
performs synchronization if necessary. If preventive replication has been selected, it 
sends the transaction to the receiver module of the replication manager. Otherwise, it 
sends the transaction directly to the DBMS. By default, the transaction router checks 
precision requirements of T before processing it, assuming that they are still valid at 
the end of T. This is not always true if a concurrent update occurs during the process-
ing of T. To ensure that the precision requirements of T are met at the end of T, a so-
lution is to process T by iteration until the precision requirements are reached. If the 
precision requirements cannot be reached, T must be aborted. Otherwise, T can be 
committed. Another solution is to forbid the execution of concurrent transactions that 
would prevent T from reaching its consistency requirements. 
Replica synchronization is delegated to the conflict manager which must also perform 
conflict detection and resolution. To have detailed information about the current state 
of replicas, the conflict manager reads the DBMS log (which keeps the history of up-
date operations) of all the nodes that have executed transactions since the last syn-
chronization point. Then, it resolves the conflicts based on priority, timestamps, or 
user-defined reconciliation rules. If automatic conflict resolution is not possible, the 
conflict manager sends a notification alert to the user or the administrator with details 
about the conflicting operations. 



5.3. Example of transaction routing 

Let us now illustrate the previous algorithms on the transactions of the example of 
Section 4.1 and show how TEPs are produced from the TP sent by the policy man-
ager. We assume that the TPs are received in order (T1, T2, Q), that data at nodes N1 
and N2 is accessed in optimistic mode and that no other transaction is running and 
conflicting with T1, T2 or Q. We first consider a case where integrity constraint C is 
not taken into account. Then we show how C influences transaction routing. 

Case 1 : no integrity constraint 
Upon receiving TP (T1, type = trans., priority = null, compatible = (), update-mode = 
no-compensate, IC = (C), max-change = {(Stock.quantity, 15), (Stock, 1)}), the trans-
action router does the following: (i) computes the set of candidate nodes {N1, N2}; 
(ii) detects that T1 is not conflicting with any running transaction, thus the candidate 
nodes are {N1, N2}; (iii) sends T1 to the least loaded node (say N1) with T1 as 
synchronization, which means that N1 must send T1 to the other node as a synchro-
nizing transaction; (iv) infers Imax(Stock, N1)=1, which means that at most one tuple 
can be modified at N1 before synchronization. 
Upon receiving TP (T2, type = trans., priority = null, compatible = ( (T1, commut.) ), 
update-mode = no-compensate, IC = (C), max-change = {(Stock.quantity, 10), 
(Stock, 1)}), the transaction router does the following : (i) computes the set of candi-
date nodes {N1, N2}; (ii) detects that T2 is conflicting with T1 but commutes with it; 
(iii) sends T2 to the least loaded node (assume N2) with T2 as synchronization. As T1 
and T2 are commutable, the order in which they will be executed at N1 (resp. N2) 
does not matter; (iv) infers Imax(Stock, N2) = 1. 
Upon receiving TP (Q, type=query., priority=null, compatible=((T1, no-commut.), 
(T2, no-commut.)), query-mode=((imprecision = 5 unit), (time-bound=no), (priority = 
time))), the transaction router does the following: (i) computes the set of candidate 
nodes {N1, N2}; (ii) detects that Q is conflicting with both T1 and T2; (iii) from the 
current values of Imax(Stock, N1) and Imax(Stock, N2), it computes that executing Q 
at either N1 or N2 would yield a result with an imprecision of at most one unit. As the 
query mode imposes an imprecision of at most 5 units, Q is sent to the least loaded 
node (say N1). In the case the query mode of Q was not allowing any imprecision, the 
router would have waited for the next synchronization of N1 and N2 to send Q. 

Case 2 : with integrity constraint 
The transaction router would detect that both T1 and T2 are likely to violate C and 
are not compensatable. Sending T1 and T2 to different nodes could lead to the situa-
tion where C is not violated at either N1 or N2, but is violated during synchroniza-
tion. Since T1 and T2 are not compensatable, this situation is not acceptable and T2 
must be sent to the same node as T1. Then we have Imax(Stock, N1) = 0 and 
Imax(Stock, N2) = 2. Upon receiving Q, the transaction router may still choose the 
least loaded node to execute it. Since the priority is given to time in the query mode, 
the least loaded node is chosen: N2. Had the priority been given to precision, N1 
would have been selected by the transaction router. 



6. Implementation 

In this section, we briefly describe our current implementation on a cluster of PCs 
under Linux. We plan to first experiment our approach with the Oracle DBMS. How-
ever, we use standards like LDAP and JDBC, so the main part of our prototype is in-
dependent of the target environment. 

6.1 Transaction load balancer 

The transaction load balancer is implemented in Java. It acts as a JDBC server for the 
application, preserving the application autonomy through the JDBC standard inter-
face. Inter-process communication between the application and the load balancer uses 
Remote Method Invocation. To reduce contention, the load balancer takes advantage 
of the multi-threading capabilities of Java based on the Linux’s native threads. For 
each incoming transaction, the load balancer delegates transaction policy manage-
ment and transaction routing to a distinct thread. The transaction router sends transac-
tions for execution to DBMS nodes through JDBC drivers provided by the DBMS 
vendors. To reduce latency when executing transactions, the transaction router main-
tains a pool of JDBC connections to all cluster nodes. 

6.2 Conflict manager  

The conflict manager is composed of three modules: (i) Log analyzer : reads the 
DBMS log to capture the updates made by the local transactions; (ii) Conflict solver : 
analyzes updates made on each node in order to detect and solve conflicts; (iii) Syn-
chronizer : manages synchronization processes. 
At each node, the log manager runs as an independent process and reads the log to 
detect updates performed by the local transactions. Those updates are sent to the con-
flict solver through time-stamped messages. The Oracle LogMiner tool can be used to 
implement this module, and messages can be managed with the Advanced Queuing 
tool. To illustrate the log analysis on our running example, the Stock update made by 
transaction T1 is detected by the following query on the LogMiner schema:  

SELECT scn, sql_redo, sql_undo 
FROM v$logmnr_contents 
WHERE seg_name='STOCK'; 

The conflict solver receives messages from the log analyzer, analyzes them to detect 
conflicting writes (e.g. update/update or update/delete) on a same data. It then com-
putes how conflicts can be solved. In the best case, the conflict is solved by propagat-
ing updates from one node to the other ones. In the worst case, the conflict is solved 
by choosing a transaction (the one with less priority) to be compensated. In both 
cases, synchronizing transactions (propagation or compensation) are sent to the corre-
sponding nodes. 



The synchronizer receives synchronizing transactions from the conflict solver. It may 
execute them either periodically or upon receiving an order from the transaction load 
balancer for an immediate synchronization. 
The preventive replication manager is implemented as an enhanced version of a pre-
ceding implementation  [11]. To implement reliable message broadcast, we plan to use 
Ensemble  [6], a group communication software package from Cornell University. 

6.3 Directory 

All information used for load balancing (execution rules, data placement, replica-
tion mode, cluster load) is stored in an LDAP compliant directory. The directory is 
accessed through Java Directory Naming Interface (JDNI) which provides an LDAP 
client implementation. Dynamic parameters measuring the cluster activity (load, re-
source usage) are stored in the directory. They are used for transaction routing. Val-
ues are updated periodically at each node. To measure DBMS node activity (e.g. CPU 
usage and I/O made by all running transactions), we take advantage of dynamic views 
maintained by Oracle. 

6.4 Planned experimentations 

The experimental cluster is composed of 5 nodes: 4 DBMS nodes + 1 application 
node. At each DBMS node, there is a TPC-C database (500MB to 2GB) and TPC-C 
stored procedures. The application node sends the transactional workload to the 
transaction load balancer through TPC-C stored procedures. The cluster data place-
ment and replication (optimistic and preventive) may be configured depending on the 
experiment goal. We plan to first measure the cluster performance (transactional 
throughput) when the database is replicated on the 4 nodes and accessed in either 
preventive or optimistic replication mode, by varying the update rates and the prob-
ability of conflict. We also plan to measure the scalability of our approach. We will 
simply implement a logical 16 node cluster where each node runs 4 DBMS instances 
to behave like a 4 node cluster. Based on the actual performance numbers with 4 
nodes, this will yield confident results. 

7. Comparison with related work  

The main work related to ours is replication in either large-scale distributed systems 
or cluster systems and advanced transaction models that trade consistency for im-
proved performance. In synchronous replication, 2PC can be used to update replicas. 
However 2PC is blocking and the number of messages exchanged to control transac-
tion commitment is significant. It cannot scale up to cluster configurations to large 
numbers of nodes.  [7] addresses the replica consistency problem for synchronous rep-
lication. The number of messages exchanged is reduced compared to 2PC but the so-
lution is still blocking and it is not clear whether it scales up. In addition, synchro-
nous solutions cannot perform load balancing as we do. The common point with our 



preventive approach is that we both consider the use of communication services to 
guarantee that messages are delivered at each node in a specific order.  [14] proposes a 
refreshment algorithm that assures correctness for lazy-master configurations, but 
does not consider multi-master configurations as we do here. Multi-master asynchro-
nous replication  [20] has been successfully implemented in commercial systems such 
as Oracle and Sybase. However, only the optimistic approach with conflict detection 
and conciliation is supported.  
There are interesting projects for replicated data management in cluster architectures. 
The PowerDB project at ETH Zurich deals with the coordination of the cluster nodes 
in order to provide a uniform and consistent view to the clients. Its solution fits well 
for some kinds of applications, such as XML document management  [5] or read-
intensive OLAP queries  [18]. However, it does not address the problem of seamless 
integration of legacy applications. The GMS project  [22] uses global information to 
optimize page replacement and prefetching decisions over the cluster. However, it 
mainly addresses system-level or Internet applications (such as the Porcupine mail 
server). Other projects are developed in the context of wide-area networks. The Trapp 
project at Stanford University  [8] addresses the problem of precision/performance 
trade-off. However, the focus is on numeric computation of aggregation queries and 
minimizing communication costs. The TACT middleware layer  [25] implements the 
continuous consistency model. Despite the fact that additional messages are used to 
limit divergence, a substantial gain in performance may be obtained if users accept a 
rather small error rate. However, read and write operations are mediated individually: 
an operation is blocked until consistency requirements can be guaranteed. This im-
plies monitoring at the server level, and it is not clear if it allows installation of a leg-
acy application in an ASP cluster. In the quasi-copy caching approach  [1], four con-
sistency conditions are defined. Quasi-copies can be seen as materialized views with 
limited inconsistency. However, they only accept single master replication, which is 
not adapted to our multi-master replication in a cluster system. Finally, epsilon trans-
actions  [24] provide a nice theoretical framework for dealing with divergence control. 
As in the continuous consistency model  [25], it allows different consistency metrics 
to give answers to queries with bounded imprecision. However, it requires to signifi-
cantly alter the concurrency control, since each lock request must read or write an ad-
ditional counter to decide whether the lock is compatible with the required level of 
consistency. In summary, none of the existing approaches addresses the problems of 
leaving databases and applications autonomous and unchanged as in our work. 

8. Conclusion 

In this paper, we proposed a new solution for parallel processing with autonomous 
databases in a cluster system for ASP, using a replicated database organization. The 
main idea is to allow the system administrator to control the consistency/performance 
tradeoff when placing applications and databases onto cluster nodes. Application re-
quirements are captured through execution rules stored in a shared directory. They are 
used at configuration time to choose the best organization for applications and data-



bases. They are also used at run-time to either prevent or tolerate copy inconsistency 
in order to optimize load balancing. 
Capitalizing on the work on relaxing database consistency for higher performance, 
this paper makes several contributions in the context of cluster systems. First, we de-
fined a replicated database architecture for clusters systems that does not hurt applica-
tion and database autonomy. We use non intrusive techniques by intercepting DBMS 
transaction calls or exploiting DBMS’s log interfaces. 
Second, we proposed a new preventive replication method that provides strong con-
sistency without the overhead of synchronous replication by exploiting the cluster’s 
high speed network. The preventive replication architecture maintains DBMS’s 
autonomy and can support optimistic replication as well, with the addition of a con-
flict manager.  
Third, we proposed a transaction load balancing architecture which can trade-off con-
sistency for performance using optimistic replication and execution rules. Support for 
both preventive and optimistic replication provides a continuum from strong consis-
tency to weaker consistency with different cost/performance. Execution rules can be 
defined at different levels of granularity (program or transaction, table or attribute or 
tuple) to express application semantics. The distinction between Transaction Policy 
(what we want) and Transaction Execution Plan (how we optimize it) eases the sys-
tem’s evolution (by changing rules) and load balancing decisions. 
Finally, we presented an execution model to execute Transaction Execution Plans in a 
way that optimizes load balancing. The optimal node is selected based on the replica-
tion mode that should be used and a cost function which estimates nodes’s load. We 
also proposed a conflict manager architecture which exploits the database logs and 
execution rules to perform replica reconciliation among heterogeneous databases. 
We have started to implement the proposed solution on LIP6’s cluster architecture 
running Linux and Oracle 8i. We are experimenting with the TPC-C benchmark to 
assess the cost/performance of preventive replication and optimistic replication (with 
relaxed consistency) under various workloads. We will also develop a simulation 
model, calibrated with our implementation, to study how our solution scales up to 
very large cluster configurations. 
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