
Refresco: Improving Query Performance
Through Freshness Control in a Database

Cluster

Cécile Le Pape1, Stéphane Gançarski1, and Patrick Valduriez2

1 Laboratoire d’Informatique de Paris 6, Paris, France
Firstname.Lastname@lip6.fr

2 INRIA and LINA, Nantes, France
Patrick.Valduriez@inria.fr

Abstract. We consider the use of a cluster system for managing au-
tonomous databases. In order to improve the performance of read-only
queries, we strive to exploit user requirements on replica freshness.
Assuming mono-master lazy replication, we propose a freshness model
to help specifying the required freshness level for queries. We propose
an algorithm to optimize the routing of queries on slave nodes based on
the freshness requirements. Our approach uses non intrusive techniques
that preserve application and database autonomy. We provide an exper-
imental validation based on our prototype Refresco. The results show
that freshness control can help increase query throughput significantly.
They also show significant improvement when freshness requirements
are specified at the relation level rather than at the database level.

1 Introduction

Recently, the database cluster approach [4,8,9], i.e. cluster systems with off-the-
shelf (black-box) DBMS nodes, has gained much interest for various applications
such as Application Service Provider (ASP). In the ASP model, applications
and databases are hosted at the provider site and accessed by customers, typi-
cally through the Internet, who are no longer concerned with data and applica-
tion maintenance tasks. Through replication of customers’ databases at several
nodes, a database cluster can yield high-availability and high-performance at
a much lower cost than with a DBMS on a tightly-coupled multiprocessor. In
the Leg@net project1, the objective is to demonstrate the viability of the ASP
model using a database cluster for pharmacy applications in France. In particu-
lar, we must support mixed workloads composed of front-office update-intensive
transactions (e.g. drug sales) and back-office read-intensive queries (e.g. statistics
on drugs sold). In practice, front-office processing has priority over back-office
processing which usually has to be performed during closing hours. Preserving
1 Project sponsored by the RNTL between LIP6, Prologue Software and ASPLine.

R. Meersman, Z. Tari (Eds.): CoopIS/DOA/ODBASE 2004, LNCS 3290, pp. 174–193, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Refresco: Improving Query Performance Through Freshness Control 175

autonomy is often of major importance in a database cluster. In the ASP con-
text, autonomy means that applications and databases must remain unchanged
when hosted at the provider site, in order to avoid high costs in migration and
maintenance. Thus, our challenge is to exploit the cluster’s parallelism to al-
low both front-office and back-office to be performed on-line, as efficiently as if
they were local to the pharmacy site. Our approach is to capture application
semantics for optimizing load balancing within the cluster system.

In [4], we discussed the architectural issues underlying our approach. We
showed that using a transaction processing monitor or a parallel DBMS does
not address the autonomy requirements. We also showed that synchronous (ea-
ger) replication is not appropriate for the ASP model, and we proposed an
asynchronous (lazy) replication scheme. In order to avoid consistency problems,
we use a mono-master (primary copy) replication scheme: update transactions
(or transactions for short) are all sent to a single master node while read-only
queries (or queries for short) may be sent to any node. Slave nodes are updated
asynchronously through refresh transactions and may contain stale data until
the refresh process is completed. However, as the serialization order of refresh
transactions on any slave node is the same as the serialization order of the cor-
responding transactions on the master node, we guarantee that queries always
read a consistent state, though maybe stale, on slave nodes. This is obtained
by sending refresh transactions sequentially to each slave node, according to the
serialization (commit) order obtained on the master node. Mono-master replica-
tion has the advantage of simplicity and is sufficient in many cases where most
of the conflicts occur between OLTP transactions and OLAP queries, as in our
pharmacy application and most of ASP potential applications. In mono-master
replication, one main dimension for data quality is freshness which is defined
through freshness level. The data at a slave node is totally fresh if it has the
same value as that at the master node, i.e. all the corresponding refresh trans-
actions have been propagated to the slave nodes. Otherwise, the freshness level
reflects the distance between the data value at the slave node and that at the
master node.

In this paper, we address the problem of expressing and exploiting freshness
requirements in order to optimize the execution of queries. An obvious observa-
tion is that queries do not always require perfectly fresh data and may tolerate
to read some stale data. For instance, assume a query Q computing the aver-
age quantity sold per product and per day over the last six months, on a table
SALE containing the sales history. As it covers a large time interval, computing
Q may be acceptable even if it misses the last tuples inserted in table SALE.
In this case, application semantics is modelled by freshness requirements which
express how many missing tuples in SALE are tolerated in order to compute Q.
Another observation is that a slave node does not always need to be refreshed
in order to comply with the freshness requirements of a query, even if the query
requires perfect freshness. For instance, if all the transactions executed on the
master node and waiting for refresh on a slave node Si do not access table SALE,
e.g. they access table PRODUCT, Si is still perfectly fresh for Q, but may be

176 C. Le Pape, S. Gançarski, and P. Valduriez

not fresh enough for a query accessing table PRODUCT. In this case, detecting
potential conflicts between transactions and queries helps reducing the refresh
sequence to apply to a node to get it fresh enough for a query. Hence, applica-
tion semantics is also modelled by the potential conflicts between queries and
transactions. In this context, we want to increase efficiency by allowing queries
to be sent to slave nodes even if they are not up-to-date, according to applica-
tion requirements on data freshness. The problem can be stated as follows: given
an autonomous database replicated in mono-master mode, evaluate the level of
copy freshness of slave nodes to route a query to and select a node such that (1)
the copy freshness level guarantees that the query result will satisfy the query
freshness requirements and (2) the choice of the node optimizes query response
time.

There are several projects close to our approach [1,2,7,12,5,8,9,6]. However,
they all have one or more of the following limitations: are specific to some kind
of data (e.g. XML documents), do not allow to model several kinds of freshness
level, do not take updates into account, require substantial modification of the
DBMS transaction manager, or do not model conflicts between OLAP and OLTP
loads at a granularity finer than the entire database.

In this paper, we make three main contributions. First, we define a freshness
model for users to specify freshness requirements for queries. This model allows
capturing conflicts between queries and transactions. Second, we propose an
algorithm to optimize the routing of queries on slave nodes based on the freshness
requirements and the conflicts. Third, we provide an experimental validation
using Refresco (Routing Enhancer through FREShness COntrol), a middleware
prototype which implements our approach.

The paper is organized as follows. Section 2 gives an overview of our database
cluster architecture. Section 3 defines the freshness model. Section 4 gives the
algorithms to optimize query routing. Section 5 presents our experimental vali-
dation. Section 6 compares our approach with related work. Section 7 concludes.

2 Database Cluster Architecture

Figure 1 gives an overview of our database cluster architecture, derived from [4].
As shown, our middleware preserves the autonomy constraint because it interfers
neither with client’s applications nor with existing databases and DBMS: it
receives requests from the application and sends them to nodes. Results are
returned from nodes to the load balancer which forwards them to clients. The
database is fully replicated on nodes S1, S2, . . . , SN . S0 is the master node which
is used to perform transactions and queries. The other nodes are slave nodes
used for queries. They are updated only through refresh transactions. Refresh
transactions are sent sequentially, according to the serialization (commit) order
obtained on the master node, in order to guarantee the same serialization order
on slave nodes. Metadata useful for the load balancer is provided and managed
by the DBA using the metadata repository. It includes for instance the default
level of freshness required by a query. It also includes information about which

Refresco: Improving Query Performance Through Freshness Control 177

Fig. 1. Mono-master replicated database architecture

part of the database is updated by the transactions and read by the queries,
enabling the detection of potential conflicts between updates and queries.

The load balancer which receives clients’ requests performs two main func-
tions: request management and routing. The request manager prepares specific
access records for transactions and queries: the transaction manager and the
query manager prepare respectively transaction records and query records. Ac-
cess records are built using metadata and dynamic information provided by the
clients (e.g. parameters for SQL programs) or resulting from the execution of
transactions on the master node or obtained by parsing application code when
available.

The router uses access records to send requests to nodes. Whenever a request
is sent to a slave node, its estimated duration is maintained by the load evalua-
tion module. Transactions are sent to the master node. Transaction records are
enriched with dynamic information about the transaction execution on the mas-
ter node (commit time of the transaction, number of tuples changed, ...). They
are stored by the freshness evaluation module until every node has executed the
corresponding refresh transaction and then removed.

When the router receives a query Q, it asks the freshness evaluation module
to compute the corresponding minimum refresh sequence for every node. It also
asks the load evaluation module to compute the current node’s load. Then, it
computes a cost function for Q for every slave node, including the cost of the
possible execution of refresh transactions in order to make the slave node fresh
enough for Q. Then the router sends the query and possible refresh transactions
to the slave node which minimizes the cost function, thus minimizing the query
response time. Since queries are only sent to slave nodes, they do not interfer
with the transaction stream on the master node. In our application example,

178 C. Le Pape, S. Gançarski, and P. Valduriez

this yields an important advantage since transactions represent front-office ap-
plications with high priority.

3 Freshness Model

In this section, we present a freshness model for queries and transactions. First,
we describe how freshness requirements are specified for a query. Based on a
definition of transaction precedence, we define refresh sequences. Then we give
three freshness measures which allow users to specify the freshness of data that
matches the semantics of the application. Second, we define conflict classes to
model potential conflicts between transactions and queries. Most of the concepts
used in this section are shown below.

Freshness Level ::= Freshness Atom
| Freshness Level ∨ Freshness Level
| Freshness Level ∧ Freshness Level

Freshness Atom ::= (Access Atom, Freshness Measure, Threshold)
Freshness Measure ::= Age | Order | Card

Access Atom ::= Database | Relation | Attribute
Conflict Class ::= {Access Atom}

3.1 Freshness Requirements

Freshness requirements of queries are specified through a flexible model which
allows the user (database programmer or DBA) to define the staleness allowed for
each part of the database read by the query depending on the desired granularity
and freshness measure. First, the user determines the access atoms of the query,
i.e. the parts of the database accessed by the query. Depending on the granularity
desired, an access atom can be the entire database, a relation or even a relation
attribute. For each access atom a, the user gives a condition on a which bounds
the staleness of a under a certain threshold t for a given freshness measure µ,
i.e. such as µ(a) < t. The freshness level of a query Q is then defined as a
logical formula composed of every freshness atom and denoted by Fresh(Q, Si):
the results of Q at a slave node Si are fresh enough if Fresh(Q, Si) is satisfied,
i.e. if it returns true.

3.2 Precedence Order and Refresh Sequences

We now define a precedence order among requests, in order to define the fresh-
ness on slave nodes. This order reflects the global serialization order among
transactions over the cluster, i.e. the serialization order obtained on the master
node and reproduced on the slave nodes. It is used to define refresh sequences for
a node, which contain the refresh transactions necessary to make the copy of the
node fresh enough. First, we define state sequences for requests (transactions or
queries) : accepted, running, done and notified. A request is accepted when the

Refresco: Improving Query Performance Through Freshness Control 179

connection between the client and the system is successful. The request is given
a global identifier i and is denoted by ri. Request ri is running if its beginning
is recorded in the DBMS log, at the master node if ri is a transaction, at a slave
node if it is a query. If ri is a transaction, it is done when its commit or abort is
recorded in the DBMS log. If ri is a query, it is done when it has committed at
a slave node and returned a result with a satisfying level of freshness. Finally, a
request is notified when its results are returned to the client.

As said in Section 1, we must ensure that queries always read a consistent
(possibly stale) state of the database. In a mono-master configuration, the local
concurrency control at the master node always produces consistent states. Thus,
ensuring global consistency is equivalent to ensuring that refresh transactions
are executed on a slave node in the serialization order of the master node, which
we obtain by sending refresh transactions sequentially, according to this order.
In practice, retrieving the serialization order on the master node depends on the
isolation protocol used by the local DBMS. If it provides commit-order serial-
izability, this is straightforward by reading commit log records2. We base our
precedence order and thus our freshness computation on the commit log record
of a transaction for two main reasons. First, since this information is available
in most existing DBMS, this makes our approach generic. Second, reading a log
is a non-intrusive method, which is important to preserve autonomy.

The precedence order among transactions is defined as follows: let T and T ′

be two transactions, we say that T precedes T ′, denoted by T ≺ T ′, if T and T ′

have committed on the master node, and T is done before T ′ is done. Note that,
as it is based on commit time, ≺ is a total order among transactions.

The precedence order between transactions and queries is defined as follows:
let T be a transaction and Q be a query, we say that T precedes Q, denoted by
T ≺ Q, if T is done before Q starts running. Note that there is no need of an
order among queries.

Let seq be a transaction sequence. Head(seq) denotes seq without its last
element, Apply(seq,Si) denotes the state of node Si after applying the transac-
tions of seq on Si. We define MinRefresh(Si, Q) the minimal refresh sequence to
apply on Si according to the ≺ order defined above, in order to make it fresh
enough for query Q as the sequence of transactions t such as:

∀t ∈ MinRefresh(Si, Q), t has committed on S0, and
Fresh(Q, Apply(MinRefresh(Si, Q), Si)), and
¬Fresh(Q, Apply(Head(MinRefresh(Si, Q)), Si))

We also define PerfectRefresh(Si) the refresh sequence to apply on Si ac-
cording to the ≺ order defined above, in order to make it perfectly fresh for any
query. It is the sequence of transactions t such as:
∀t ∈ PerfectRefresh(Si), t has committed on S0 ∧ ¬(t is done on Si)

2 We use the Oracle’s SERIALIZABLE ISOLATION LEVEL.

180 C. Le Pape, S. Gançarski, and P. Valduriez

3.3 Freshness Measures

Classifications of freshness measures can be found in [1,2,3,11,12]. We adapt
these measures to our context because we cannot use internal information of the
DBMS transaction manager to evaluate them.

Let a be an access atom. We consider different measures µ and define them,
at a given instant t, for a being either an attribute, a relation or the entire
database. First, we define U(ai) as the set of transactions updating an access
atom ai, U(ai) = {T ∈ PerfectRefresh(Si) ∧ T updates ai}, where T updates ai

is defined as follows:

– if ai is an attribute R.att, T updates ai if it inserts or deletes at least one
tuple in Ri, or modifies att in at least one tuple of Ri,

– if ai is a relation Ri, T updates ai if it inserts, deletes or modifies at least
one tuple in Ri,

– if ai is the database, T updates ai if it inserts, deletes or modifies at least
one tuple.

We define three freshness measures Order, Age and Card as follows:

Order(ai): the ordering measure of ai is the number of transactions updating
a which have committed on the master node and have not yet been propagated
on slave node Si at instant t, i.e.

Order(ai) = |U| (the cardinal of U)

Age(ai): the age of ai is the maximum time since at least one transaction
updating a has committed on the master node and has not yet been propagated
on slave node Si at instant t, i.e.

Age(ai) = Max(t − T.commit time), T ∈ U

Card(ai): this measure reflects the number of stale elements in ai. If ai is an
attribute R.att, Card(ai) is the number of tuples in Ri inserted, deleted or having
att being modified by all the transactions in U . If ai is a relation R, Card(ai) is
the number of tuples in Ri inserted, deleted or updated by all the transactions
in U . If ai is the database, Card(ai) is the number of tuples inserted, deleted or
updated by all the transactions in U .

These different measures correspond to different user requirements. Measure
Order is useful, for instance, for queries involving history relations, since it can
estimate the number of missing inserted tuples. Measure Age allows modelling
queries such as “Give the value of X as it was no later than Y minutes ago”. It is
also useful for queries accessing history relations. For instance, if a query wants
data as of last week, the results will be correct if computed on a node stale since
one hour. Measure Card is more relevant for estimating the accuracy of a query
result, since it is able to count the number of individual updates missing to get
a copy perfectly fresh. These measures can also be combined to define complex
measures. Note that, by definition, freshness is computed just before a query is
sent to the best node: transactions sent to the master node after this moment
are not taken into account.

Refresco: Improving Query Performance Through Freshness Control 181

3.4 Conflict Classes

Conflict classes are used to detect potential conflicts between transactions and
queries, before query execution. They are stored in the metadata repository.
They may be given by the user or inferred by parsing the transactions’ source
code (when available). They can also be deduced from the access atoms used to
model transactions and queries.

Let r be a request. The conflict class of r, denoted by CC(r), is defined as a
set of access atoms potentially accessed by r. The conflict class of a request r is a
superset of the data set which the request will actually access. As transactions are
serialized at the master node, we are not interested in the data read transactions.
Thus, CC(r) is the data which r will potentially write (resp. read) if r is a
transaction (resp. a query). Conflict classes may be defined in different ways,
depending on the granularity needed by applications. Consider transaction T1,
and queries Q1 and Q2 defined as follow:
T1: update PRODUCT set price=price*1.1 where id=1234;
Q1: select id, avg(quantity) from SALE where date between
to date(’07/01/2003’)

and to date(’12/31/2003’) group by id;
Q2: select id from PRODUCT where type=’Lotion’;

The table below shows the conflict classes for T1, Q1 and Q2 according to
the selected granularity level. When specified at the database level, T1 and Q1
potentially conflict. But they do not potentially conflict when specified at the
relation level because Q1 reads data from table SALE when T1 updates data
in table PRODUCT . Q2 and T1 potentially conflict at the relation level when
they do not conflit at the attribute level. This example shows that the choice
of the granularity level impacts potential conflicts: the finer the granularity, the
less potential conflicts exist.

Conflict classes allow defining potential conflicts between requests. Since
transactions are serialized on the master node, there is no need for our mid-
dleware to handle write/write conflicts. Thus, since a query cannot conflict with
another query, we only need to define potential conflicts between a transaction
and a query. A query Q and a transaction T potentially conflict if a least one
access atom of CC(Q) conflicts with one of CC(T) conflicts, according to the
following rules:

� the database potentially conflicts with any other access atom
� a relation Ri potentially conflicts with a relation Rj iff Ri = Rj

182 C. Le Pape, S. Gançarski, and P. Valduriez

� a relation Ri potentially conflicts with an attribute Rj .colk iff Ri = Rj

� an attribute Ri.attk potentially conflicts with an attribute Rj .attl iff Ri =
Rj ∧ attk = attl

In other words, an access atom potentially conflicts with another one if they
are the same or if one is included in the other. Potential conflicts include real
conflicts, i.e. conflicts at execution time. This means that whenever a transaction
and a query actually conflict, a potential conflict has been detected a priori.
The reverse is not true. Consider query Q3: select * from PRODUCT where
id=4567;. Even at the finest granularity of our model (attribute), a potential
conflict is detected on PRODUCT.id between Q3 and transaction T1 defined
above. However, at execution time, T1 and Q3 do not access the same tuple
and will not actually conflict. This problem could be solved in some cases by
defining conflict classes at finer granularity levels (e.g. tuple), but this would
make freshness evaluation much more complex and costly in terms of metadata
management.

4 Trading Freshness for Load Balancing

In this section, we show how freshness can be evaluated and give an algorithm
that use the freshness model to optimize query load balancing.

4.1 Evaluating Freshness

Computing the measures defined above is relatively straightforward. Order is
evaluated by counting the number of transactions necessary to get an access atom
copy perfectly fresh. Age is evaluated using the commit time of transactions.
Card evaluation uses the number of tuples modified by a transaction returned by
the database driver after the transaction commit on the master node. However,
freshness atoms can not be evaluated with a perfect precision. The main reason is
that we must evaluate them before the query is sent to a given slave node. At that
time, we do not know which tuples will be accessed by the query. As discussed
in Section 3.4, it is thus impossible to determine which transactions not already
propagated on the node will really conflict with the query. Our solution to this
problem is to compute an upper bound for freshness atoms, called confidence
level. The confidence level of a freshness atom (a, µ, t), denoted by conf(a, µ), is
a value which guarantees that µ(a) ≤ conf(a, µ). Therefore the following holds:
(conf(a, µ) ≤ t) ⇒ (µ(a) ≤ t).

Confidence levels are computed using potential conflicts between queries and
transactions, as defined in Section 3.4, based on the conflict classes stored in the
metadata repository. As potential conflicts include real conflicts, this guarantees
that freshness atom evaluation is over-estimated. Note however that transactions
which do not potentially conflict with the access atoms included in the freshness
atom are not considered in the computation.

Refresco: Improving Query Performance Through Freshness Control 183

4.2 Computing the Minimum Refresh Sequence for a Query
MinRefresh(Si, Q)

A query is sent to a slave node only if the node satisfies the freshness level of the
query. Therefore, when choosing an execution node, the router needs to know for
every slave node which refresh transactions must be sent to the node if it is not
fresh enough. To this end, it asks the freshness evaluation module to compute
the corresponding minimum refresh sequence for every node. Figure 2 shows the
queue managed by the freshness evaluation module where incoming transactions
are stored until every slave node has executed it. They are placed in the queue
in the global serialization order, i.e. the serialization order on the master node.
The refresh level of a slave node Si is represented by a “stack pointer” leveli:
all transactions preceding the transaction pointed by leveli have already been
executed at Si. Node Si is perfectly fresh when leveli meets the master node
pointer, master level.

Fig. 2. Transactions global ordering.

In this example, the set of running transactions is T1, T2, ..., T6 while an
incoming transaction T7 is about to be inserted. The global execution order
is (T2, T1, T3, T6, T4, T5). There are four slave nodes: S1 and S2 have processed
transactions (T2, T1, T3, T6), S3 has not been updated since the beginning may
be due to a network failure and S4 is the only slave node perfectly fresh.

This data structure minimizes memory utilization. First, since there is only
one queue for all the slave nodes, adding a node to the cluster only implies adding
a new pointer. Second, as soon as an transaction has been propagated to all slave
nodes, it is deleted from the queue. Based on this queue, function getMinRefresh
(see Figure 3.a) computes the minimum refresh sequence of a slave node Si for
the freshness level f of a given query, which is available in the query record. It
returns a pointer to a level between the node current level and the master node
level. This means that the sequence of transactions between the node current
level and the level computed must be applied to the slave node in order to
make it fresh enough for the query. If the freshness level is a freshness atom, the
algorithm tries to decrease the refresh level needed, from the master level to the
lowest possible level. The best case is to reach the current node level: no refresh
is necessary for this query on this node. For each level reached, the confidence
level of this freshness atom is updated when some potential conflict is detected

184 C. Le Pape, S. Gançarski, and P. Valduriez

with the corresponding transaction. The process ends when the threshold for the
freshness measure is exceeded.

Fig. 3. Computing the minimum refresh sequence and routing algorithm for a query

4.3 Routing Algorithm

Figure 3.b shows the routing algorithm which evaluates query refreshment and
execution cost on every slave node in order to choose the best node. First,
based on previous executions of the query, function getAvgTime(query) eval-
uates the query execution time on the node. Then the current load of the
node is added. It is estimated by the load evaluation module which sums
the remaining execution time of all the running transactions on the node. Fi-
nally, the total cost is increased with the refresh cost, given by expression re-
freshLoad(getMinRefresh(Q.freshness level,node),node) which evaluates the ex-
ecution time of the minimum refresh sequence for the query Q on this node.
The best node is the one minimizing the total cost. If more than one node have
the same cost, we make a random choice. Before the function route() returns,
it calls function asksRefresh() which asynchronously sends a refresh demand to
the refresher. The query execution starts on the node when the refreshment is
done.

Refresco: Improving Query Performance Through Freshness Control 185

In our approach, routing is a multi-criteria decision. It takes into account
simultaneously the query freshness criterion, but also the current nodes load
criterion and the refreshment cost criterion. Hence, the router may decide that
refreshing a stale node is better than choosing a node fresh enough, for exam-
ple when the refresh sequence is small and the node sligthly loaded. All these
criteria are considered at the same time, which is more efficient than optimizing
one criterion after each other. Our refresh strategy is embedded in the routing
process. It is different from [9], where routing is independent from the refresh
strategy. The strategy in [9] proceeds as follows. It first selects the nodes which
are fresh enough and then elects the least loaded node. If there is no node fresh
enough for a query, the query waits until refresh is activated upon time-out.
Thus, it does not take into account, as we do, cases when the refreshment cost
is lower than sending the query to a node fresh enough but very loaded.

5 Experimental Validation

In order to validate our approach, we developped a prototype, called Refresco,
which implements our architecture and routing algorithm. We evaluate the influ-
ence of freshness on global performance, with different freshness measures. Then
we focus on the impact of freshness threshold. Finally, we study the impact of
different cluster sizes to show significant benefits even with small numbers of
nodes.

5.1 Prototype Environment

The prototype is implemented in Java (jdk 1.4). The database is fully replicated
on four nodes, each running the Oracle 8i server under Linux. The middleware
layer runs on a fifth node. All nodes (Pentium IV 2Ghz, 512 Mb RAM) are
interconnected by a switched 1 GBit/s Fast-Ethernet local area network. We
generated the database according to the TPC-R benchmark [10] with a scaling
factor of 1. The workload contains OLTP transactions and OLAP queries sending
one SQL request (transaction or query) every 5 ms. The transactions correspond
to the TPC-R refresh function RF1 while the queries are randomized TPC-R
queries. The workload is composed of six transaction streams and six query
streams. The average response time, obtained by executing transactions on a
load-free single Oracle Server node is about 4ms for OLTP transactions while it
is more than two minutes for OLAP queries. Each experiment has a duration of
20 minutes.

5.2 Experiment Parameters and Performance Measures

Experiment parameters are described in the table below. Within the same exper-
iment, every query has the same freshness policy: the freshness level is a logical
AND formula and access atoms are defined by the same freshness measure, the
same freshness threshold and the same granularity.

186 C. Le Pape, S. Gançarski, and P. Valduriez

Threshold 0, ..., +∞
Granularity database / relation
Freshness measure age / order / card
Number of nodes 1, 2, 3, 4

For every experiment, we made the following measurements:

– Query throughput: the number of queries executed per hour.
– QMRT: the mean response time per query in seconds.
– Transaction throughput: the number of transactions executed on the master

node per minute.
– TMRT: the mean response time per transaction on the master node in mil-

liseconds.

The total response time of a query is detailed as the time to choose the best
node (routing time), the time to refresh the node (refresh time) and the time to
execute the query on the selected node (DB time).

5.3 Impact of Freshness Threshold

In these experiments, we focus on how the freshness policy influences transaction
and query performance. We use measures Age, Order and Card. We ran these
experiments on 4 nodes using the database granularity. We vary the freshness
threshold from 0 to 1200s for measure Age, from 0 to 160000 transactions for
measure Order and from 0 to 240000 tuples for measure Card. Maximum limits
for the threshold are defined according to the experiment duration (20 minutes).
Over this limit, freshness thresholds become so high that even the most obsolete
slave node would be fresh enough to satisfy the query. Any higher threshold will
give the same results.

Figure 4(a) shows that varying freshness does not impact transaction
throughput on the master node, as one could expect. More interesting, it also
shows that transaction mean response time is almost the same than the refer-
ence time, when no queries are sent to slave nodes. This mean that transactions
are not slowed down by queries. This result is a direct consequence of choosing
a mono master configuration where the master node does not perform queries.
Though obvious, this result is important if we remember that in our context,
we must guarantee that transactions, generated by front-office applications, are
interactive.

Figure 4(b) shows that relaxing data freshness improves query throughput
significantly. For instance, with a freshness threshold of 300s for measure Age
(i.e. data may be out-of-date since at most 5 minutes), twice as many queries are
performed within the same time as when the freshness threshold is 0 (i.e. data
must be perfectly fresh). The query throughput is 70% percent as good as the
reference throughput, obtained when no transaction is applied on the master
node (last column on the right). This is important in pharmacy applications
where statistics on stocks may be computed on-line but are usually acceptable
even if computed with data stale since hours or even days.

Refresco: Improving Query Performance Through Freshness Control 187

(a) Influence of freshness (measure
Age) on transaction mean response
time

(c) Influence of freshness (measure
Age) on query response time

(b) Influence of freshness on query throughput

Fig. 4.

Figure 4(c) shows how relaxing data freshness decreases query response time.
For instance, with a freshness threshold of 300s (measure Age), the user obtains
the query results 50% faster compared to a freshness threshold of 0. Results for
other measures are very similar and we omit them to keep the figure readable.
The decomposition of response time in routing time, refresh time and database
time helps explaining these results. First, the database time decreases with re-
spect to the threshold. This is purely due to experimental conditions: queries
wait less time for refresh, thus more queries are sent to each node during the
same time and the local DBMS remains less idle. With a more intensive workload
and the same number of nodes, the local DBMS would be overloaded and the
database time would no longer decrease. Second, we see that the routing time
used by the router to choose the best node is negligible3. In fact, it decreases
as the threshold increases since the router reaches faster the required freshness
level.

3 It is even too small to be seen on the figure

188 C. Le Pape, S. Gançarski, and P. Valduriez

Third, the time a query waits for refresh also decreases with respect to the
threshold and can be considered negligible with a threshold greater than 600s,
i.e. half of the experiment total time. This is explained by the fact that with
a larger threshold, nodes need less refresh to fulfill the freshness requirements
of queries. Of course, this means that each node becomes less and less fresh
and there will be a higher price to pay to refresh it sooner or later during the
lifecycle of the node’s database. However, in typical ASP applications, the OLTP
activity is more regular than the OLAP activity which can increase at specific
times. Thus, outside of OLAP intensive periods, slave nodes are less busy and
can be used for (possibly background) refreshment. This shows that, for normal
use cases, the overhead induced by our middleware, i.e. routing time + refresh
time, remains acceptable and can be considered negligible when users accept to
read data stale since a reasonable time.

5.4 Impact of Granularity

We now investigate how the granularity of freshness atoms impacts query perfor-
mance. The freshness threshold is 0, i.e. queries access perfectly fresh data. We
built three different workloads with different conflict rates. The conflict rate of a
workload is defined as the proportion of potential conflicts between transactions
and queries. Thus, it is always equal to 1 at the database level. At the relation
level, the three workloads have the following conflict rates: 0.15, 0.50 and 0.80.
We ran the three workloads on four nodes with measure Age. Each workload was
run first at the database level, then at the relation level.

Figure 5 shows that the query mean response time is from 16% (conflict rate
of 0.8) to 70% (conflict rate of 0.15) better when the freshness requirements are
specified at the relation level. At the database level, every query must wait until
its execution node is perfectly fresh. At the relation level, the router knows when
a query asks for data belonging to a relation which has not yet been updated on
the master node. Hence, queries without conflicts do not have to wait for refresh
(see section 5.3). The benefits depend on the conflict rate since the more queries
conflict with transactions, the more slave nodes must be refreshed before query
execution.

Figure 6 shows for conflict rate of 0.15 how queries are balanced on the slave
nodes at the database and relation levels. We model the quantity of work done on
a slave node as the total execution time of all the queries executed on the node.
We distinguish between queries conflicting (resp. non conflicting) with transac-
tions at the relation level. At the database level, queries are simply balanced
on the slave nodes depending on the load, in a classical way. But even queries
without conflict must wait until their execution node is perfectly fresh because
the router cannot detect it since their freshness is specified at the database level.
At the relation level, slave nodes appear to get specialized: node 2 gets non con-
flicting queries while other queries are balanced between node 1 and node 3.
Queries without conflict are executed without waiting because they need not
refresh. Since conflicting queries need refresh, they require more resources so
two nodes are used. The percentage of slave nodes used by conflicting queries

Refresco: Improving Query Performance Through Freshness Control 189

Fig. 5. Influence of granularity on
query mean response time

Fig. 6. Load balancing of queries on
slave nodes

decreases with the conflict rate. This locality-oriented phenomenon stems from
the routing algorithm behavior, because refreshment cost is one criterion. Nodes
where conflicting queries have been executed are fresher than nodes with only
queries without conflict. Thus, these fresh nodes are better candidates for the
next conflicting queries because their refreshment cost is low. As time goes on,
the freshness divergence of slave nodes increases and this phenomenon is ampli-
fied. This behavior of our router satisfyes the requirements of applications where
many queries asks for data which are not updated very often. It is particularly
efficient when the conflict rate is low. In the pharmacy application case, it is
true for instance for queries computing incompatibilities among drugs sold to
the same customers. The table which contains such information is only updated
whenever a new product is put on the market, which is less than one time per
day.

5.5 Impact of the Number of Cluster Nodes

We now focus on the impact of the number of cluster nodes on performance.
We want to demonstrate the benefits we can expect, even with a small number
of nodes in order to keep the cost of hosting an application reasonable. The
same experiment (freshness measure is Age, threshold is 600 and granularity is
the database) has been executed successively on one up to four nodes. Other
measures and thresholds give similar results and are omitted due to space limi-
tations.

Figure 7 shows that with only 2 slave nodes, the query mean response time
is twice better than with only one node. The explanation is simply that the
router balances the queries between the two slave nodes. Adding another node
decreases significantly the mean response time. This is obtained by a large gain
in database time. It appears that the refresh time increases with the number
of nodes, but remains acceptable (less than 10%). This is mainly due to the
fact that when many nodes are used, each one receives less queries in average.

190 C. Le Pape, S. Gançarski, and P. Valduriez

Fig. 7. Influence of number of nodes on
query response time

Fig. 8. Influence of number of nodes on
transaction throughput

Whenever a query is sent to such a node, it takes less advantage from the refresh
already performed on the node for preceding queries.

Figure 8 justifies our choice of dedicating the master node to transactions,
taking into account that our workload is rather transaction intensive. The first
column on the left shows that the transaction throughput would be dramatically
poor if queries where all sent to the master node. With more than one node, we
can route queries only on slave nodes and the number of nodes does not impact
the transaction throughput, since slave nodes are refreshed in a lazy mode.

6 Related Work

There are several interesting projects related to our work. The PowerDB project
at ETH Zurich deals with the coordination of cluster nodes in order to provide
a consistent view to the clients. Their authors give a specific solution to XML
document management in [5] and to cache evaluation for OLAP queries in [8],
without taking updates into account. More recently, they addressed issues simi-
lar to the ones addressed in this paper [9]. With a similar architecture, they show
how trading freshness for query performance leads to substantial gains in query
response time and make a nice comparison of various refresh strategies. However,
their freshness model is very simple, with only one freshness measure, equivalent
to our measure Age. Furthermore, they do not model conflict classes to detect po-
tential conflicts, i.e. they only consider one level of granularity for access atoms
: the entire database. As mentionned in Section 4.3, their routing is independent
of their refresh strategy and they do not take into account, as we do, cases when
the refreshment cost is lower than sending the query to a node fresh enough but
very loaded. Furthermore, they model freshness as the ratio between the commit
time of the last transaction propagated on a slave node and the commit time
of the most recent update transaction on the master node. This definition does
not reflect any real-world measure. It is also difficult to interpret, except when
freshness is equal to 1, since it depends on the clock origin. The Trapp Project at

Refresco: Improving Query Performance Through Freshness Control 191

Stanford [7] adresses the problem of precision/performance trade-off, but focuses
on optimizing the computation of aggregate queries by reducing the cost of wide-
area network communications. The TACT middleware layer [12] implements the
continous consistency model. However, reads and writes are mediated individu-
ally, not at the transaction level, which is not appropriate for the management
of legacy database application in an ASP cluster. Quasi-copies [1] can be seen as
materialized views with limited inconsistency, but the fressness model is not as
complete as ours, and it is not clear how queries coming from legacy applications
may be seamlessly integrated into their system. Epsilon transactions [2] provide
a nice theoretical framework for divergence control, with different consistency
metrics. However, it requires to alter the concurrency control, since divergence
control is done at the lock manager level. Thus, it hurts the DBMS autonomy
constraint.

7 Conclusion

In this paper, we addressed the problem of query performance in a database
cluster with optimistic replication. Based on the observation that many queries
do not need to access perfectly fresh data, which is the case in our ASP context
with pharmacy applications, we strived to exploit user requirements on data
freshness to improve query performance.

Assuming mono-master replication, we proposed a freshness model for users
to specify the required freshness level for queries. The model is flexible since it
allows users defining composite freshness formulas, with different freshness mea-
sures and at different levels of granularity. We proposed algorithms to evaluate
data freshness and compute the minimum set of refresh transactions needed to
guarantee that a node is fresh enough with respect to a given query. Our refresh
strategy is embedded in the load balancing process: a node is selected to execute
a query based on its current load as well as on the cost of refreshing it enough
to comply with the query freshness requirements.

To validate our approach, we developped the Refresco prototype on LIP6’s
cluster running Oracle 8i under Linux. Through experimentation with the TPC-
R benchmark, we showed that significant benefits can be obtained by relaxing
freshness with a reasonable threshold, whatever the freshness measure and even
with few nodes. We also showed that the overhead induced by computing nodes’
freshness is negligible in the routing process. Finally, we showed the major impact
of granularity levels on load balancing when defining conflict classes. It appears
that, if freshness requirements are defined at a fine level of granularity (e.g. rela-
tion), our routing strategy is self-adaptable. It routes queries that read update-
intensive data to some nodes which remain always fresh, while queries that read
data with low update frequency are routed to other nodes which can remain
stale longer. This yields significant gains in response time for workloads where
the conflict rate is low (e.g. a 70% gain for a conflict rate of 0.15). Our choice of
mono-master replication was motivated by its simplicity advantage (to maintain
copy consistency) and by the fact that it is sufficient to many applications like in

192 C. Le Pape, S. Gançarski, and P. Valduriez

our ASP context. However, a remaining issue is that the master node is a single
point of failure and a potential bottleneck for heavy transactional workloads. A
solution is multi-master replication which provides high-availability and allows
for transaction parallelism (using several master nodes). But multi-master repli-
cation is more involved since parallel updates may produce inconsistent copies.
In [4], we introduced a preventive solution to this problem. The preventive repli-
cation method provides strong consistency without the overhead of synchronous
replication, by exploiting the cluster’s high speed network. Thus, to exploit the
solution proposed in this paper with multi-master replication, we can use preven-
tive replication between masters and optimistic replication between each master
and its slaves.

There are several interesting directions for future work. First, we want to
investigate other freshness measures, such as the euclidian distance for numerical
data. We also want to study the impact on performance induced by finer levels
of granularity such as tuple or relation subset. It is not clear yet if the added
overhead for metadata management will be amortized by performance gains.
Second, we plan to improve our refresh strategy. As mentionned in Section 5.3,
our approach fits well with OLAP intensive sessions of limited duration so that
refreshment may be performed during idle periods. In order to limit staleness of
some nodes, we plan to include autonomous refresh capabilities in our system, for
instance, active rules implemented through triggers. Finally, despite our purpose
was to demonstrate that the ASP mode is viable with few nodes dedicated to
each application, we want to how our approach scales up with the number of
nodes by running experiments on larger clusters.

References

1. R. Alonso, D. Barbará, and H. Garcia-Molina. Data caching issues in an informa-
tion retrieval system. ACM TODS, 15(3):359–384, 1990.

2. D. Barbará and H. Garcia-Molina. The demarcation protocol: A technique for
maintaining constraints in distributed database systems. VLDB Journal, 3(3):325–
353, 1994.

3. R. Gallersdörfer and M. Nicola. Improving performance in replicated databases
through relaxed coherency. In Int. Conf. on VLDB, 1995.

4. S. Gançarski, H. Naacke, E. Pacitti, and P. Valduriez. Parallel processing with au-
tonomous databases in a cluster system. In Int. Conf. On Cooperative Information
Systems (CoopIS), 2002.

5. T. Grabs, K. Böhm, and H.-J. Schek. Scalable distributed query and update service
implementations for XML document elements. In Workshop on Research Issues in
Data Engineering, 2001.

6. A. Labrinidis and N. Roussopoulos. Balancing performance and data freshness in
web database servers. In Int. Conf. on VLDB, 2003.

7. C. Olston and J. Widom. Offering a precision-performance tradeoff for aggregation
queries over replicated data. In Int. Conf. on VLDB, 2000.

8. U. Röhm, K. Böhm, and H.-J. Schek. Cache-aware query routing in a cluster of
databases. In Int. Conf. On Data Engineering (ICDE), 2001.

Refresco: Improving Query Performance Through Freshness Control 193

9. U. Röhm, K. Böhm, H.-J. Schek, and H. Schuldt. Fas - a freshness-sensitive co-
ordination middleware for a cluster of olap components. In Int. Conf. on VLDB,
2002.

10. Transaction Processing Performance Council. Tpc-r : a business reporting, decision
support benchmark. http://www.tpc.org/tpcr/default.asp.

11. K.-L. Wu, P. S. Yu, and C. Pu. Divergence control for epsilon-serializability. In
Int. Conf. On Data Engineering (ICDE), 1992.

12. H. Yu and A. Vahdat. Design and evaluation of a conit-based continuous consis-
tency model for replicated services. ACM TOCS, 20(3):239–282, 2002.

	Introduction
	Database Cluster Architecture
	Freshness Model
	Freshness Requirements
	Precedence Order and Refresh Sequences
	Freshness Measures
	Conflict Classes

	Trading Freshness for Load Balancing
	Evaluating Freshness
	Computing the Minimum Refresh Sequence for a Query {em MinRefresh(S_i,Q)}
	Routing Algorithm

	Experimental Validation
	Prototype Environment
	Experiment Parameters and Performance Measures
	Impact of Freshness Threshold
	Impact of Granularity
	Impact of the Number of Cluster Nodes

	Related Work
	Conclusion

