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Abstract

Relaxing replica freshness has
been exploited in database clusters to
optimize load balancing. However, in
most approaches, refreshment is typ-
ically coupled with other functions
such as routing or scheduling, which
make it hard to analyze the impact of
the refresh strategy itself on perfor-
mance. In this paper, we propose to
support routing-independent refresh
strategies in a database cluster with
mono-master lazy replication. First,
we propose a model for capturing ex-
isting refresh strategies. Second, we
describe the support of this model in
Refresco, a middleware prototype for
freshness-aware routing in database
clusters. Third, we describe an exper-
imental validation to test some typi-
cal strategies against different work-
loads. The results show that the
choice of the best strategy depends
not only on the workload, but also on
the conflict rate between transactions
and queries and on the level of fresh-
ness required by queries. Although
there is no strategy that is best in
all cases, we found that one strategy,
ASAUL(0), is usually very good and
could be used as default strategy.
Keywords: replication, database clus-
ter, load balancing, refresh strategy.

1 Introduction

Database clusters provide a cost-effective al-
ternative to parallel database systems, i.e.

database systems on tightly-coupled multi-
processors. A database cluster [9, 8, 25, 26] is
a cluster of PC servers, each running an off-
the-shelf DBMS. A major difference with par-
allel database systems is the use of a “black-
box” DBMS at each node. Since the DBMS
source code is not necessarily available and
cannot be changed to be “cluster-aware”, par-
allel database system capabilities such as load
balancing must be implemented via middle-
ware.

The typical solution to obtain good load
balancing in a database cluster is to repli-
cate data at different nodes so that users can
be served by any of the nodes. If the work-
load consists of (read-only) queries, then load
balancing is relatively easy. However, if the
workload includes (update) transactions in
addition to queries, as in an Application Ser-
vice Provider (ASP) [8], load balancing gets
more difficult since replica consistency must
be enforced.

Managing replication in database clusters
has recently received much attention. As in
distributed databases, replication can be ea-
ger (also called synchronous) or lazy (also
called asynchronous). With eager replication,
a transaction updates all replicas, thereby en-
forcing the mutual consistency of the repli-
cas. By exploiting efficient group communi-
cation services provided by a cluster, eager
replication can be made non blocking (un-
like with distributed transactions) and scale
up to large cluster sizes [12, 13, 24, 11]. Fur-
thermore, it makes query load balancing easy.



With lazy replication, a transaction updates
only one replica and the other replicas are up-
dated (refreshed) later on by separate refresh
transactions [21, 22]. By relaxing consistency,
lazy replication can better provide transac-
tion load balancing, in addition to query load
balancing. Thus, depending on the consis-
tency/performance requirements, eager and
lazy replication can be both useful in database
clusters.

Relaxing consistency using lazy replica-
tion has gained much attention [1, 2, 19, 29,
26, 15], even quite recently [10]. The main
reason is that applications often tolerate to
read data that is not perfectly consistent,
and this can be exploited to improve perfor-
mance. However, replica divergence must be
controlled since refreshing replicas becomes
more difficult as divergence increases. In
[16], we addressed this problem in the con-
text of a shared-nothing database cluster. We
chose mono-master lazy replication because
it is both simple and sufficient in many ap-
plications, e.g. ASP, where most of the con-
flicts occur between transactions and queries.
Transactions are simply sent to a single mas-
ter node while queries may be sent to any
node. Because refresh transactions at slave
nodes can be scheduled in the same order as
the transactions at master nodes, queries al-
ways read consistent states, though maybe
stale. Thus, with mono-master replication,
the problem reduces to maintaining replica
freshness. A replica at a slave node is to-
tally fresh if it has the same value as that
at the master node, i.e. all the corresponding
refresh transactions have been applied. Oth-
erwise, the freshness level reflects the distance
between the state of the replica at the slave
node and that at the master node. By con-
trolling freshness at a fine granularity level
(relation or attribute), based on application
requirements, we gained more flexibility for
routing queries to slave nodes, thus improv-
ing load balancing.

To validate our approach, we built a mid-

dleware prototype called Refresco (Routing
Enhancer through FREShness COntrol). In
the implementation presented in [16], Re-
fresco had only one refresh strategy which is
on-demand: if the load balancer selects an
underloaded node that is not fresh enough
for an incoming query, it first sends refresh
transactions to that node before sending the
query. Such routing-dependent refresh strat-
egy is locally optimal since the freshness level
of some nodes may get lower and lower, thus
increasing the cost of refreshment. For in-
stance, when all nodes are busy and too stale,
refreshment can take much time and hurt per-
formance.

In this paper, we propose to support
routing-independent refresh strategies that
can maintain nodes at a reasonable level of
freshness, independently of which queries are
routed to them. Thus, refresh transactions
can be triggered based on events other than
routing. The events can be either internal,
e.g. when a node is too stale, idle or little
busy, or external, e.g. after some time from
the last refreshment. There are several pos-
sible refresh strategies, each being best for a
given workload and the level of freshness re-
quired by queries. For instance, if the work-
load is update-intensive and if queries are
rare and require a perfect freshness, then it
is better to refresh nodes frequently, e.g. as
soon as possible, in order to take advantage
of periods when nodes are query-free to re-
fresh them. On the contrary, when the work-
load is query intensive but queries do not re-
quire high freshness, it is better to refresh only
when necessary, in order to not overload nodes
with unnecessary refreshment.

The general problem we address can be
stated as follows: given a definition of a mixed
workload of update transactions and queries,
including the required level of freshness for
queries, select the best routing-independent
refresh strategy, i.e.
average query response time.

the one that minimizes

In most approaches to load balancing, re-



freshment is tightly-coupled with other issues
such as scheduling and routing. This makes it
difficult to analyze the impact of the refresh
strategy itself. For example, refreshment in
[26] is interleaved with query scheduling: it
is activated by the scheduler, for instance if
a node is too stale to fullfill the freshness re-
quirement of any query in the scheduler input
queue. Many refresh strategies have been pro-
posed in the context of distributed databases,
data warehouse and and database clusters. A
popular strategy is to propagate updates from
the source to the copies as soon as possible
(ASAP), as in [3, 4, 6]. Another simple strat-
egy is to refresh replicas periodically [5, 17]
as in data warehouses [7]. Another strategy
is to maintain the freshness level of replicas,
by propagating updates only when a replica
is too stale [28]. There are also mixed strate-
gies. In [20], data sources push updates to
cache nodes when their freshness is too low.
However, cache nodes can also force refresh-
ment if needed. In [15], an asynchronous Web
cache maintains materialized views with an
ASAP strategy while regular views are regen-
erated on demand. In all these approaches,
refresh strategies are not chosen to be optimal
with respect to the workload. In particular,
refreshment cost is not taken into account in
the routing strategy. There has been very few
studies of refresh strategies and they are in-
complete. For instance, they do not take into
account the starting time of update propa-
gation [27, 14] or only consider variations of
ASAP [23].

This paper has three main contributions.

Figure 1 gives an overview of our database
cluster architecture, which extends the ar-
chitecture of [16] with a refresh manager, a
cluster state manager and a scheduler. The
database cluster system is a middleware layer
between the clients and the database nodes:
it receives requests from clients, sends them
to nodes for processing, and receives back re-

First, we propose a model which allows de-
scribing and analyzing existing refresh strate-
gies, independent of other load balancing is-
sues. Second, we describe the support of this
model in our Refresco prototype. Third, we
describe an experimental validation based on
a workload generator, to test some typical
strategies against different workloads. The re-
sults show that the choice of the best strat-
egy depends not only on the workload itself,
but also on the conflict rate between trans-
actions and queries and on the level of fresh-
ness required by queries. Although there is
no strategy that is best in all cases, we found
that one strategy, ASAUL(0), is usually very
good and could be used as default strategy.
Our prototype allows the DBA to select the
best strategy according to the workload type
generated by the application. It is thus com-
pliant with the OGSA-DAI [18] definition of
a Data Resource Manager providing flexible
and transparent access.

The paper is organized as follows. Sec-
tion 2 describes our database cluster archi-
tecture, with emphasis on load balancing and
refreshment. Section 3 defines our model to
describe refresh strategies. Section 4 defines
a workload model which helps defining typi-
cal workloads for experimentations. Section
5 presents our experimental validation which
compares the relative performance of typical
refresh policies. Section 6 concludes.

2 Database Cluster Architec-
ture

sults which it forwards to clients.

This middleware preserves the autonomy
of both applications and databases which can
remain unchanged, as required in ASP [8] for
instance. It receives requests from the appli-
cations through a standard JDBC interface.
All additional information necessary for rout-
ing and refreshing is stored and managed sep-
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Figure 1: Mono-master replicated database architecture

arately of the requests.

We assume that the database is fully
replicated: node Ny is the master node
which is used to perform transactions while
nodes N1, Na, ..., N, are slaves nodes used for
queries. The master node is not necessarily a
single cluster node which could be a single
point of failure and a bottleneck. It is an ab-
straction and can be composed of several clus-
ter nodes coordinated by any eager replication
protocol such as [13]. Slave nodes are only up-
dated through refresh transactions which are
sent sequentially, through refresh sequences,
according to the serialization (commit) order
on the master node. This guarantees the same
serialization order on slave nodes.

To support general applications such as
ASP, the access to the database is through
stored procedures. Thus, clients requests are
procedure calls. Metadata useful for the load
balancer is specified through an XML editor
and stored in a metadata repository. It in-
cludes for instance the default level of fresh-
ness required by a query. It also includes in-

formation about which part of the database
is updated by the transactions and read by
the queries, thus enabling the detection of po-
tential conflicts between updates and queries.
More precisely, each updating (resp. read-
only) procedure defines a transaction class
(resp. query class). A query class potentially
conflicts with a transaction class if an instance
of the transaction class may write data that
an instance of the query class may read. We
formally defined potential conflicts using con-
flict classes in [16].

The request factory enriches requests with
metadata obtained from the repository and
dynamic information provided by the clients
(e.g. parameters for stored procedures).
Then it sends the requests to the sched-
uler. The scheduler can implement different
scheduling policies, such as Random, Earliest
deadline, Minimal execution time first, and
so on. In this paper, in order to focus on re-
fresh policies, we use a simple FIFO schedul-
ing: transactions are sent to the router in the
same order they arrive to the scheduler.



Dynamic information such as transaction
commit time on the master node, data fresh-
ness on slave nodes, estimated nodes load,
is maintained by the cluster state manager.
The information related to each transaction is
maintained until every node has executed the
corresponding refresh transaction, after which
it is removed.

The router can implement different rout-
ing strategies, such as Random, (weighted)
Round-robin, Shortest Queue first, Short-
est execution first (SELF), and so on. Re-
fresco implements a enhanced version of SELF
which includes the estimated cost of refresh-
ing a node on-demand. It works as follows.
Upon receiving a transaction, it sends it to the
master node. After the transaction committ-
ment on the master node, the results are sent
to the client and the router updates the clus-
ter state, so that the newly committed trans-
action is taken into account for computing
node freshness. When the router receives a
query @, it computes a cost function for @ for
every slave node and selects for execution the
slave node which minimizes the cost function,
thus minimizing the query response time. The
cost of executing a query on a node is com-
posed of the node’s load plus an eventual cost
of refreshing it before sending the query. The
node’s load is obtained from the load evalua-
tion module which computes the sum of the
remaining execution times of running requests
on the node. The execution time of a request
is estimated through a weighted mean algo-
rithm based on the previous executions of the
request. Depending on application needs, the
router can be switched to perform routing-
dependent (on-demand) refreshment. To this
end, it asks the freshness evaluation module
to compute, for every node, the corresponding
minimum refresh sequence to make the slave
node fresh enough for @), and includes the
cost of the possible execution of this sequence
into the cost function. After the eventual on-
demand refresh is performed by the refresher
on the selected node, the router sends the

query to this node and updates the cluster
state. Since queries are only sent to slave
nodes, they do not interfer with the transac-
tion stream on the master node.

The refresh manager handles routing-
independent refreshment. According to the
refresh policy, it receives events coming from
different part of the cluster state manager:
load evaluation module, freshness evaluation
module or external events such as time. It
then triggers the selected routing-independent
refresh policy which eventually asks the re-
fresher module to perform refresh sequences.
Whenever the refresher sends refresh se-
quences to a node, it updates the cluster state
for further freshness evaluations by the corre-
sponding module.

3 Modeling Refresh Strate-
gies

In this section, we propose a model for defin-
ing various refresh strategies. It can be used
as a basis to help a DBA specifying when,
to which slave nodes, and how much to re-
fresh. The refresh model is based on a fresh-
ness model which allows measuring the stale-
ness of a slave node with respect to the master
node.

3.1 Freshness Model

Freshness requirements are specified for ac-
cess atoms, which represent portions of the
database. Depending on the desired gran-
ularity, an access atom can be as large as
the entire database or as small as a tuple
value in a table. A freshness atom associ-
ated with an access atom a is a condition on
a which bounds the staleness of a under a cer-
tain threshold ¢ for a given freshness measure
i, ie. such as p(a) < t. The staleness of
an access atom on a slave node is defined as
the divergence between the value of a on the
slave node and the value of a on the master
node. The freshness level of a set of access



atoms {a',a?,...,a"} is defined as the logical

conjunction of freshness atoms on a'.

In [16] we introduced several freshness
measures. For simplicity in this paper, we
consider only measure Age. Age(ay) denotes
the maximum time since at least one transac-
tion updating a has committed on the mas-
ter node and has not yet been propagated on
slave node N, i.e.

Age(an) = | Max(current_time()
- T.commit_time), T € U(an)

0if Ulan) =0

where U(ay) is the set of transactions up-
dating a and not yet propagated to slave node
N.

The freshness level of a query @ is a fresh-
ness level on the set of access atoms read by Q).
Users determine the access atoms of the query
at the granularity they desire, and define a
freshness atom for each access atom. A node
N is fresh enough to satisfy @ if the freshness
level of @ is satisfied on N. The freshness
level of a node N is simply the freshness level
on the entire database on N.

3.2 Refresh Model

We propose to capture refresh strategies with
the model in Figure 2. A refresh strategy is
described by the triggering events which raise
its activation, the nodes where the refresh
transactions are propagated and the number
of transactions which are part of the refresh
sequence. A refresh strategy may handle one
or more triggering events, among:

e Routing(N,Q): a query @ is routed to
node N.

We apply our refresh model to the follow-
ing strategies:
3.2.1 On-Demand (OD)

The On-Demand strategy is triggered by a
Routing(N) event. It sends a minimal refresh

e Underloaded(N,limit): the load of node
N decreases above the limit value.

e Stale(N, u,limit): the freshness of node
N for measure p decreases above the
limit value. In other words, the fresh-
ness level of node N for measure p and
threshold limit is no more satisfied. In
this paper, since we only consider the
Age measure, this parameter becomes
implicit and the event can be simpli-
fied as Stale(N,limit) which stands for
Stale(N, Age, limit)

e Update(T): a transaction T is sent to the
master node.

e Period(t): triggers every t seconds.

As soon as an event handled by the refresh
manager is raised, the refresher computes a
sequence of refresh transactions to propagate.
Depending on the nature of the event, the re-
fresh sequence is sent to a single slave node
or broadcast to all slave nodes. For instance,
Routing(N, Q) activates a refreshment only on
slave node N while Period(t) activates a re-
freshment on all the slave nodes.

Finally, the refresh quantity of a strategy
indicates how many refresh transactions are
part of the refresh sequence. This value can
be minimum, ¢.e. the minimum refresh se-
quence which brings a node to a certain fresh-
ness. The maximum value denotes a refresh
sequence containing every transaction not yet
propagated to the destination. Of course, the
quantity may also be arbitrary (for instance,
a fixed size).

to node N to make it fresh enough for Q.

3.2.2 As Soon As Possible (ASAP).

The ASAP strategy is triggered by a Up-
date_sent(T) event. It sends a maximal re-
fresh sequence to all the slave nodes. As



Refresh Strategy ::=
Event ::=

( {Event}, Destination, Quantity)
Routing(N,Q)

| Underloaded(N,limit)
| Stale(N,u,limit)

| Update_sent(T)

| Period(t)

Destination ::=
Quantity ::=

Slave Node | All Slave Nodes

Minimum | Maximum | Arbitrary

Figure 2: Refresh model

ASAP strategy maintains slave nodes per-
fectly fresh, the maximal refresh sequence is
reduced to the transaction T which raised the
event.

3.2.3 Periodic(t).

The Periodic(t) strategy is triggered by a
period(t) event. It sends a maximum refresh
sequence to all the slave nodes.

3.2.4 As Soon As
(ASAUL(limit)).

The ASAUL strategy is triggered by a Under-
loaded(N,limit) event. It sends a maximum
refresh sequence to V.

Underloaded

3.2.5 As Soon As Too
(ASATS(limit)).

The ASATS strategy is triggered by a
Stale(N,limit) event. It sends a maximum
refresh sequence to V.

Stale

3.2.6 Hybrid Strategies.

Refresh strategies can be combined to im-
prove performance. Though a lot a combi-
nations are possible, we focus here on the
interaction between routing-dependent (On-
Demand) and routing-independent strategies

(all other strategies). Thus, for each routing-
independent strategy, we derive an hybrid
version which combines it with On-demand.
Note however that combining On-demand
with itself does not make sense and that
ASAP is equivalent to its hybrid version
(nodes are maintained perfectly fresh, thus
on-demand refresh is never triggered).

The following table summarizes all these
refresh strategies.

’ Strategy ‘ Event ‘ Dest ‘ Qty
OD Routing(N) N | min
ASAP Update_sent(T) all | max
Periodic | Period(t) all | max
ASAUL | Underloaded(N,limit) | N | max
ASATS | Stale(N,limit) N | max

4 Modeling Workloads

In this section, we propose a workload model
that captures the main workload characteris-
tics which impact refreshment. We use this
model to define our experimental workloads
for comparing refresh strategies.

4.1 Workload Model

Our workload model is shown in Figure 3.



Workload ::=
Transaction workload ::=
Query workload ::=

( transaction workload, query workload, conflict rate)
(nb of transaction clients, active phase, sleeping phase)
(nb of query clients, waiting time, tolerated staleness)

Figure 3: Workload model

A workload is composed of several clients.
Each client is either of type transaction or of
type query, i.e. it only sends transactions or
only queries. A workload is characterized by a
transaction workload, a query workload and a
conflict rate. A transaction workload is char-
acterized by a number of transaction clients,
an active phase duration and a sleeping phase
duration. A query workload is characterized
by a number of query clients, a waiting time
and a tolerated staleness.

Clients of type transaction have a periodic
behaviour. During a period, they are succes-
sively all active (they send transactions con-
tinuously) and then all sleeping. The active
phase has a fixed duration while the sleeping
phase is variable. The shorter the sleeping
phase, the higher is the transaction load. The
transition between the sleeping phase and the
next active phase is smoothed, in order to be
more realistic by avoiding all the transactions
reaching the router exactly at the same time.

Clients of type query send queries se-
quentially, with a waiting time between two
queries. The shorter the waiting time, the
higher is the query load. In order to simplify,
all the queries in a workload have the same
tolerated staleness, which is the threshold of
every query’s freshness level. It describes the
maximal staleness a data on a node can have
for the query to be executed on it. For in-
stance, a workload where queries require to
read perfectly fresh data has a tolerated stal-
eness equal to 0.

We define the conflict rate of a work-
load as the proportion of potential con-
flicts between transactions and queries.

Let {TC:,,TCy,...,TCy,} be the appli-

cation set of transaction classes and
{QC1,QC%,...,QC,,} the application set of
query classes. The conflict rate (cr) of a work-
load is defined by the following formula :

_ im1 2272 aj x conflict(T'Cy, QCY)

cr =
Y1y

where :

e conflict(T'C;, QCj) is equal to 1 if the
transaction class T'C; potentially con-
flicts (see Section ) with the query class
QC}, otherwise it is equal to 0.

e «; is the number of instances of the
query class QC; in the workload.

4.2 Experimental Workloads

We now use our workload model to define
our experimental models which cover a wide
range of applications. The number of trans-
action clients is fixed to 16, while the number
of query clients is fixed to 256. Each work-
load has a total duration of 10000 time units
(TU) . We fix the active phase duration to
100 TU. We consider that a transaction load
(tl) is high (resp. low) for a sleeping time
equal to 50 TU (resp. 300 TU). A query load
(ql) is considered as high (resp. low) for a
waiting time equal to 0 TU (resp. 300 TU).
This allows defining four basic workloads, ac-
cording to the transaction load and the query
load. For instance, a HIGH-LOW workload
is composed of a high transaction load and a

'In order to get results independent of the underlying DBMS, all durations are described in terms of time units

(TU) used for simulation.



low query load. All the basic workloads are
parameterized with the conflict rate (cr) and
a tolerated staleness for queries (¢s). Thus, a
workload is described as a tuple (¢l, ¢l, cr, ts).

5 Experimental Validation

In this section, we describe our experimen-
tal validation where we compare the perfor-
mance of various refresh strategies under dif-
ferent workloads. After describing our exper-
imental setup, we study the performance of
the basic refresh strategies with their hybrid
version. Then we study the impact of con-
flict rates and of tolerated freshness on per-
formance.

5.1 Experimental Setup

Our experimental validation is based on the
enhanced version of the Refresco prototype,
which is developed in Java 1.4.2. In or-
der to get results independent of the under-
lying DBMS’s behaviour, we simulated the
execution of a request on a node, with 128
slave nodes. Each request is considered as a
fixed-duration job: 100 TU for query classes
and 5 TU for updates classes. We simulated
database access using Simjava, a process-
based discrete event simulation package in
Java (see http://www.dcs.ed.ac.uk/home/
hase/simjava/). We chose simulation be-
cause it makes it easier to vary the various pa-
rameters and compare strategies However, we
also calibrated our simulator for database ac-
cess using an implementation of our Refresco
prototype on the 64-node cluster system of the
Paris team at INRIA (http://www.irisa.
fr/paris/General/cluster.htm) with Post-
greSQL as underlying DBMS.

For each experiment, we first present the

results obtained with a perfect freshness re-
quired (ts=0) and a varying conflict rate, then
with a conflict rate of 1 (cr=1) and a varying
tolerated staleness. As our aim is to speed up
query execution, we choose the query mean
response time of a workload (QMRT) as per-
formance measure.

We study individually each strategy hav-
ing a parameter: Periodic(t), ASAUL(limit)
and ASATS(limit). This allowed selecting
the most representative strategy instance, by
selecting a “small value” (SV) and a “large
value” (LV), represented in the following ta-
ble.

| Strategy | Parameter | SV (TU) [ LV (TU) |

Periodic t 100 1000
ASAUL limit 0 500
ASATS limit 100 500

Note that Periodic(1) and ASATS(0) are
not representative. Indeed, as they are each
time unit or each time a node is not perfectly
fresh, they are quite equivalent to ASAP.

5.2 Performance Comparisons of
Basic and Hybrid Strategies

We now investigate the impact on perfor-
mance of combining a basic refresh strategy
with the On-Demand strategy. To this end,
we use the four basic workloads by varying
the conflict rate and the tolerated staleness
and compare the performance of each strat-
egy with its hybrid version.

Figure 4 shows the performance compar-
isons of each strategy with its hybrid version.
We only give the results obtained for a low-low
workload, with a conflict rate of 0.8 (cr=0.8)
and no tolerated staleness (ts=0), but the
conclusion is valid for all the workloads.



Strategy

ASAUL(0)
ASAUL(500)
ASAP
PERIODIC(100)
PERIODIC(1000)
ASATS(100)
ASATS(500)

basic hybrid

QMRT | QMRT
184 119
125 124
124 124
173 145
629 250
173 149
638 214

Figure 4: Comparing each refresh strategy with its hybrid version

The results show that in every case, the
hybrid version is at least as good as the non-
hybrid version. In almost all cases, the hy-
brid version yields a substantial gain com-
pared with the basic strategy (up to 300 % in
Figure 4 for ASATS(500)). Of course, there
is no gain for ASAP since its hybrid version
is equivalent to its basic version. The perfor-
mance gain is explained by the fact that the
On-Demand strategy never performs unnec-
essary refreshment. It is only triggered when
a node is not fresh enough for a query but
lightly loaded so that, even with the cost of
refreshing the node on-demand, it is the node
which minimizes the query response time. In
cases where few nodes are fresh enough for
a query, this yields better load balancing. In
cases where many nodes are fresh enough, the
on-demand refreshment is not triggered, thus
with no overhead.

Since they always dominate, we only con-
sider hybrid strategies in the remaining of this
section.

5.3 Impact of Conflict Rate on Per-
formance

Figure 5 shows the performance (QMRT) of
the various refresh strategies versus the con-
flict rate, with a perfect tolerated staleness (of
0). We omit workloads of type high-low and

low-high, but they raise similar conclusions.

5.3.1 Light Workloads.

Figure 5(a) shows that, except for very small
conflict rates, the best performance for light
workloads is obtained with strategies that re-
fresh frequently, i.e. maintain nodes (almost)
always fresh. These strategies are ASAP (ob-
viously) and ASAUL since nodes are idle very
often. They trigger refreshment often but do
not interfere much with queries because the
refreh sequences are executed mostly during
idle periods.

On the contrary, On-Demand performs
rather poorly as soon as the conflict rate is
exceeds 0.4. Indeed, since queries are rare, it
is triggered rarely. Thus, each time a query
is routed, the refresher must propagate many
updates (since the last refresh) before execut-
ing the query. This increases response time
significantly.

5.3.2 Heavy Workloads.

In Figure 5(b) , the behavior of the strategies
is quite different from that in Figure 5(a). On-
Demand yields the best performance in most
cases (except when the conflit rate exceeds
than 0.9) because refreshment is done often
(the query frequency is high), but only when
needed.
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Figure 5: Performance comparisons with varying conflict rate (tolerated freshness=0)



In this context, ASAP is better only for
very high conflict rates because it always re-
freshes. This is useless for smaller conflict
rates where refresh is not frequently required.
Similarly, Periodic and ASATS do not per-
form well. As they do not take into account
the nodes load and perform maximum refresh
sequences, they raise useless overhead when
refreshing. We also observe that ASAUL(0)
performs as On-Demand because nodes are
never idle.

5.3.3 Conclusions.

When perfect freshness is required, we can
draw the following conclusions. On-Demand
is always the best strategy for heavy work-
loads, except when the conflict rate is very
high, ASAP is the best strategy for light work-
loads except, for very small conflict rates, and
in all cases when the conflict rate is very high.
ASAUL(0) is the best overall strategy: for
each workload type and conflict rate, it is al-
ways the best or “close to the best” (20 % in
the worst case).

5.4 Impact on Tolerated Staleness
on Performance

Figure 6 shows the performance (QMRT) of
the various refresh strategies versus the toler-
ated staleness, with a high conflict rate (of 1).
High-low and low-high workloads give results
similar to high-high and are omitted.

A general observation is that, for all the
strategies except ASAP, the results are bet-
ter when the tolerated staleness is higher.
Obviously, when queries do not require high
freshness, there is a higher probability that a
node is fresh enough for any query. Thus on-
demand refresh is less necessary, which speeds
up query execution. This is not the case for
ASAP, since it does not require on-demand re-
fresh. When the tolerated staleness is beyond
a given value, performance does not change
for most strategies. This is due to the fact

that all the nodes are always fresh enough for
queries and thus on-demand is no more trig-
gered. Thus, refreshing nodes is useless for
queries. This is obviously the case for Pe-
riodic, but also for ASATS. In fact, ASATS
also behaves periodically in this context. This
is due to the fact that transactions are per-
formed periodically on the master node, thus
the freshness on slave nodes always decreases
at the same speed. More interesting is the
case of ASAUL. For light workloads, ASAUL
has also a periodic behaviour : when a node
is idle or lightly loaded, ASAUL refreshes it
and the node becomes busy. Thus, it is no
more refreshed during a given duration and
gets idle. Then ASAUL refreshes it, and
so on. For heavy workloads, nodes are al-
ways busy and thus, as already mentionned,
ASAUL is similar to On-Demand. Particu-
larly, as nodes are never idle, ASAUL(0) per-
forms quite the same as On-Demand. On-
Demand is always sensitive to the tolerated
staleness. As nodes are refreshed only when
necessary, performance increases as tolerated
stalenes increases.

5.4.1 Light Workloads.

Figure 6(a) shows that On-Demand is outper-
formed by strategies which frequently refresh
nodes and thus take advantage of nodes be-
ing frequently idle. Among them, ASAUL(0)
is the best since it naturally adapts to idle
node events.

5.4.2 Heavy Workloads.

Figure 6(b) shows that On-Demand outper-
forms the other strategies whenever the tol-
erated staleness is above approximately 500
TU. In this case, the overhead due to the fre-
quent refresh performed by other strategies is
higher since nodes are never idle. It is more-
over useless since queries do not require high
freshness.

Again, since nodes are never idle,
ASAUL(0) only triggers on-demand and thus
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its performance is the same as On-Demand.
When the tolerated staleness is below 500 TU,
frequent refreshments are necessary, and thus
ASAP is the best strategy.

5.4.3 Conclusions.

For workloads where the conflict rate is high,
we can draw the following conclusions. On-
Demand is always the best strategy for heavy
workloads except when the tolerated staleness
is small, ASAP is the best strategy for light
workloads except when the tolerated staleness
is very high. ASAUL(0) is the best overall
strategy since it is equivalent to ASAP for
light workloads, and to On-Demand for heavy
workloads.

6 Conclusion

Relaxing replica freshness can be well ex-
ploited in database clusters to optimize load
balancing. However, the refresh strategy re-
quires special attention as the way refresh-
ment is performed has strong impact on re-
sponse time. In particular, it should be inde-
pendent of other load balancing issues such as
routing.

In this paper, we proposed a refresh model
that allows capturing state-of-the-art refresh
strategies in a database cluster with mono-
master lazy replication. We distinguished be-
tween the routing-dependent (or on-demand)
strategy, which is triggered by the router,
and routing-independent strategies, which are
triggered by other events, based on time-outs
or on nodes state. We also proposed hybrid
strategies, by mixing the basic strategies with
the On-demand strategy.

We described the support of this model
by extending the Refresco middleware pro-
totype with a refresh manager which imple-
ments the refresh strategies described in the
paper. The refresh manager is independent of
other load balancing functions such as routing

and scheduling. In our architecture, support-
ing hybrid strategies is straightforward, since
they are simple conjunctions of basic strate-
gies already implemented in the refresh man-
ager (or in the router for On-Demand).

In order to test the different strategies
against different application types, we pro-
posed a workload model which captures the
major parameters which impact performance:
transaction and query loads, conflict rate be-
tween transactions and queries, and level of
freshness required by queries on slave nodes.

We described an experimental validation
to test some typical strategies against dif-
ferent workloads. An important observation
of our experiments is that the hybrid strate-
gies always outperform their basic counter-
part. The experimental results show that
the choice of the best strategy depends not
only on the workload, but also on the con-
flict rate between transactions and queries
and on the level of freshness required by
queries. Although there is no strategy that is
best in all cases, we found that one strategy
(ASAUL(0)) is usually very good and could
be used as default strategy.

Finally, the work presented in this pa-
per can be seen as a first step toward a self-
adaptable refresh strategy, which would com-
bine different strategies by analysing on-line
the incoming workload. According to the real-
life applications dynamicity, our middleware
should automatically adapt the refresh strat-
egy to the current workload, using for instance
machine-learning techniques.
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