
Data Quality Management in a Database Cluster with Lazy Replication

Cécile Le Pape† - Stéphane Gançarski† - Patrick Valduriez‡
† Firstname.Lastname@lip6.fr, LIP6, Paris, France
‡Patrick.Valduriez@inria.fr, INRIA and LINA, Nantes, France

Abstract

We consider the use of a database cluster with lazy replication. In this context, controlling the quality
of replicated data based on users’ requirements is important to improve performance. However, existing
approaches are limited to a particular aspect of data quality. In this paper, we propose a general model of
data quality which makes the difference between “freshness” and “validity” of data. Data quality is expressed
through divergence measures from the data with perfect quality. Users can thus specify the minimum level of
quality for their queries. This information can be exploited to optimize query load balancing. We implemented
our approach in our Refresco prototype. The results show that freshness control can help increase query
throughput significantly. They also show significant improvement when freshness requirements are specified
at the relation level rather than at the database level.

Keywords : Database Cluster, Middleware, Replication, Quality, Freshness, Validity.

1 Introduction

A database cluster [16] is a cluster of PC servers, each running an off-the-shelf “black-box” DBMS. Database clusters

have recently gained much interest as they provide a cost-effective alternative to parallel database systems, such as

Oracle Real Application Cluster. For instance, they can make new applications such as Application Service Providers

economically viable [5]. In a database cluster, data replication is often used to increase both data availability and

performance. In this context, controlling the quality of replicated data based on users’ requirements is important to

improve load balancing, and thus performance.

In a DBMS, the fundamental tool for maintaining data quality is transactions. However, the implementation

of ACID transaction properties (e.g. two-phase locking) incurs a performance overhead. Thus, a typical solution

is to distinguish between update transactions and (read-only) queries. ACID properties are needed for update

transactions to avoid the introduction of inconsistencies in the database. However, queries (and users issuing thoses

queries) may accept to relax consistency if they can obtain the results faster. Examples of such queries can be found

in many decision-support applications, where, for instance, the inaccuracy on an individual data does not affect the

overall results computed over thousands or millions of items. Thus, many approaches proposed to relax transactional

properties, mainly isolation, for read-only queries. The main idea is to allow queries to read “dirty data”, i.e. data

written by transactions which have not yet been committed yet, in order to reduce response time.

With data replication, ensuring ACID properties is more complex since mutal copy consistency must be preserved,

through global isolation [14]. Ensuring global isolation implies that a transaction modifying a data must update all

its copies before any other transaction can access the data, property known as 1-copy serializability. In other

words, all the copies of a given data must be accessed in the same transaction order (or compatible order). This

property can be ensured with eager (or synchronous) replication, where all the copies are updated within the initial

transaction. However, eager replication tends to increase transaction latency because of the use of a distributed

commit protocol. To reduce latency, lazy (or asynchronous) replication updates all the copies in separate transactions

after the commitment of the initial transaction. However, lazy replication implies that, during a certain time, copies

of the same data diverge : some have already the new value introduced by the initial transaction, others have not.

This divergence refers to the notion of data freshness: the lower the divergence of a copy with respect to the other

copies already updated, the fresher is the data copy. And users may accept to read stale data, i.e. data not perfectly

fresh.

Although they correspond to different aspects, reading dirty data and reading stale data are very similar. In

both cases, the value read differs from an “ideal” value, valid in the first case, perfectly fresh in the second case. In

both cases, the divergence corresponds to a certain number of transactions, not yet committed in the first case, not

yet propagated in the second case. Several approaches have partially addressed these issues [8, 20, 19, 16]. However,

most of them do not handle both dirty data and stale data. Furthermore, most of them typically require heavy

modifications to the existing concurrency control mechanisms, which makes them inappropriate for database clusters

with “black-box” DBMS. In summary, none of these solutions offers a user-friendly interface to let users specifying

easily their requirements on data quality.

In this paper, we propose a general solution in the context of a database cluster with lazy replication. The main

contributions are: (1) a data quality model where freshness and validity are treated in a uniform way, allowing users to

specify the level of quality for their queries; (2) a database cluster middleware, independent of the underlying DBMS,

that exploits quality requirements to perform query load balancing; (3) efficient algorithms for computing divergence

measures used for routing queries and maintaining replicated data at a required level of quality; (4) performance

results based on our Refresco prototype (of a database cluster middleware) that show that freshness control can help

increase query throughput significantly.

The rest of the paper is organized as follows. Section 2 presents our data quality model, its use in different

replication configurations, and several divergence measures useful in a database cluster. Section 3 discusses data

quality management in our database cluster architecture. Section 4 describes performance evaluation using our

Refresco prototype. Section 5 discusses related work. Finally, Section 6 concludes.

2 Data Quality Model

In this section, we define the notion of data quality in order to cope with different replication configurations. We

define four basic quality measures. We also propose quality formulas for specifying more complex requirements.

2.1 Data Quality Definitions

The transaction model considers read-only transactions, called queries and other update transactions. As shown

in Figure 1, a transaction starts in state“accepted”, then “executed”1, then “committed” or “aborted” and finally,

reaches the state “notified”.

EXECUTEDACCEPTED NOTIFIED

COMMITTED

ABORTED

Figure 1: Transaction state chart

The states have the following meanings:

• Accepted : the user will be notified of the termination of the transaction and will get the results.

• Executed : the effects of the transaction are visible to other queries .

• Committed : the effects of the transaction are made durable. We assume that we know in which global order

transactions are committed.

• Aborted : the effects of the transaction are undone.

• Notified : the user has been notified of the termination and has received the result (if any).

These states have different meanings depending on the replication configuration. In case of mono-master (primary

copy [7]) replication, the master node is the only one to receive updates and then propagates them to the slave nodes.

Hence, the local commitment of an update transaction on the master node implies the global commitment of the

1Failure handling is out of the scope of this paper

transaction. In case of multi-master replication (primary group), the global commitment requires communications

between all the master nodes where the transaction is executed.

The data model distinguishes between a logical data a as seen by applications and its physical copies ai as stored

at cluster nodes. a may be defined at different levels of granularity:

Data ::= Database | Relation | Tuple | Attribute | Element

where Element represents an attribute value for a single tuple. The logical data defines a reference state, the state

reached by a copy when it has received all the committed update transactions in the global order. Thus, a copy has

perfect quality if in its reference state.

Property 1 A copy has perfect quality if and only if

• it is valid, ie. it reflects the updates made only by update transactions committed in the global order, and

• it is fresh, ie. it reflects the updates made by all the committed update transactions.

ai

ai

valid

valid

logical data a

a
=

= a

a=

= a

a a

a

a ^

a

ik

k+1
i

fresh

k

k+1

^k

k+1
i

L

previous
state

current
state

physical copy

valid

L
fresh

L

fresh

valid

L

fresh

Figure 2: Logical and physical data state chart

With lazy replication, physical copies have not always perfect quality. The quality of a copy reflects the divergence

between the copy state and the corresponding logical data state. Depending on the way transactions are committed

and updates propagated, state transitions of a copy may differ. Possible states transitions are shown in Figure 2.

Assume a logical data a changing from state ak to state ak+1 due to the global commitment of transaction Tk.

ak+1 is now the reference state. Let ai be a copy of a, initially in state ak, fresh and valid. If no update is applied

to ai, ai is no more fresh since it misses the effects of Tk but is still valid. Otherwise, ai can have different state

transitions according to the updates applied to it :

ai : ak → ak+1. Tk is performed on ai which goes back to a perfect quality state.

ai : ak → âk. One or several uncommitted transactions are performed on ai which is thus no more valid and

still not fresh since Tk has not been performed.

ai : ak+1 → âk+1. One or several uncommitted transactions are performed on ai after Tk. ai is thus fresh but

not valid.

configuration valid and ¬ fresh ¬ valid and fresh ¬ valid and ¬ fresh
single node / impossible scenario 1 impossible

eager
lazy mono-master scenario 2 scenario 1 impossible

on the master node
lazy multi-master impossible scenario 3 impossible

lazy multi-delegate idem scenario 2 idem scenario 1 scenario 4

Figure 3: Possible data qualities according to configuration

A copy may be waiting for refresh or for commitment of update transactions already applied to it. We denote

by WaitRefresh(ai) the set of update transactions globally committed and waiting to be propagated to ai, and by

WaitValid(ai) the set of update transactions already executed and waiting to be committed (or aborted). Finally, we

denote by Wait(ai) the set of update transactions waiting on ai, i.e. Wait(ai) = WaitRefresh(ai) ∪ WaitValid(ai).

2.2 Replication Configurations

Data quality may apply to different replication configurations. We consider four configurations, which extend those of

[7]. The first configuration combines non replicated databases and eager replication. The three other configurations

correspond to different lazy replication modes and can be combined to form an hybrid configuration. Figure 3 shows

the different possible states of a data according to the configuration.

In the remaining of this section, Ri(ak) (resp. Wi(ak)) denotes that transaction Ti reads (resp. writes) data ak.

W ∗
i (ak) denotes that the write operation initially applied to a copy of a is propagated to ak. Ci (resp. Ai) denotes

the local commit (resp. abort) of transaction Ti.

A replication configuration depends on the capabilities of the cluster nodes. We distinguish three types of nodes:

• a master node can execute both update transactions and queries. It participates to the global commitment of

any update transaction.

• a delegate node can execute both update transactions and queries but does not participate to the global

commitment of update transactions.

• a slave node can only execute queries. It is updated by propagating the updates made by transactions on other

types of nodes.

The single node and eager configurations are presented together since they are equivalent in terms of data qual-

ity. In both cases, the local commitment of a transaction implies its global commitment. This implies that data

is always fresh. However, dirty reads may happen if isolation is relaxed, such as in the following execution at a node k.

(scenario 1) node k : R1(ak) W1(ak) R2(ak) C1

This scenario is referred to as “Read Uncommitted” in the ANSI isolation levels.

The lazy mono-master configuration, referred to as primary master in [7], is composed of one master node and

several slave nodes. Update transactions are sent to the master node, slave nodes are updated through refresh

transactions. On the master node, scenario 1 may occur. On the slave nodes, data is alway valid since updates are

propagated through refresh transactions only when the corresponding update transaction is committed. However, it

is not always fresh, as suggested by the following scenario:

(scenario 2) master node N0 : R1(a0) W1(a0) C1

slave node Ni : R2(ai) W ∗
1 (ai)

When the read operation R2(ai) is executed at node Ni, ai is valid but not fresh since it misses the effects of the

committed write W1(a0) at the master node N0. This scenario occurs in many applications where slave nodes are

used as caches (or concrete views) of the master node.

The lazy multi-master configuration, or update anywhere, is composed of only master nodes, and is referred to

as lazy group configuration in [7]. Update transactions can be sent to any node. A transaction can be committed

only if all the nodes are ready to commit it. Thus, data is always fresh, but dirty reads are possible, such as in the

following scenario:

(scenario 3) node i Ni : R1(ai) W1(ai) R2(ai) C1

node j Nj : W ∗
1 (aj) C1

When the read operation R2(ai) of transaction T2 is executed at node Ni, ai is not valid since it has read values

written by T1 which is not yet committed by both Ni and Nj .

The multi-delegate configuration, which also allows for update anywhere approach, is composed of one master

node and several delegate nodes. Update transactions can be sent to any node, but only N0 is allowed for validating

them. At node N0, scenario 1 may occur. Scenario 2 may occur as well in case a transaction sent to N0 is waiting for

propagation to other nodes. Furthermore, reading data that is neither fresh nor valid is also possible, as illustrated

below:

(scenario 4) node N0 (master) : W1(a0) C1 W ∗
2 (a0) A2

node Ni (delegate): W2(ai)R3(ai)

When the read operation R3(ai) of transaction T3 is executed at node Ni, ai is not valid since T2 has not yet

been committed. It is no more fresh since the write W1 has been committed but has not yet been propagated to Ni.

2.3 Data Quality Measures

Several divergence measures have been proposed in the litterature [1, 3, 4, 18, 20]. We adapt them to fit with our

definition of data quality and in our database cluster middleware. In our definitions, divergence (and thus data

quality) can be expressed at different levels of granularity. We define four quality measures, NbOp, NbElt, Age and

Num to compute the data quality of the physical copy ai, i.e. the divergence between a and ai.

•NbOp measures the number of update transactions waiting on data ai, i.e. the cardinal of set Wait(ai) defined in

section 2.1.

NbOp(ai) = |Wait(ai)|
•NbElt measures the number of values not valid or not fresh contained in the data. If the data is a single element

elti, then

NbElt(elti) = { 0 if Wait(elti) = �
1 else

If the data is composed of several elements, i.e. if the data is a tuple, an attribute, a relation or the whole database,

then

NbElt(ai) =
∑

elti∈ai
NbElt(elti)

•Age measures the age of the oldest transaction waiting on the data.

Age(ai) = Now() - Min
(
{UpdateDate(t,ai) , t ∈ WaitValid(ai)} ∪ {CommitDate(t) , t ∈ WaitRefresh(ai)}

)
where UpdateDate(t,ai) is the date when the data has been updated at node Ni and CommitDate(t) is the date of

the global commitment of transaction t. The Age measure makes the assumption that nodes clocks are synchronized,

which is reasonable in a cluster where nodes are interconnected through a fast network.

•Num is the euclidian distance between the respective values of ai and a. It only makes sense for numerical attributes,

and applies only for elements or for the set of elements of a same relation attribute (or column).

If the data is a single element elti, then

Num(elti) = | elt− elti |
where elt is the logical element corresponding to the physical copy elti.

If the data is the set of elements of a column, then

Num(ai) = Max{Num(elti), elti ∈ ai}

2.4 Data Quality Specification

Specifying data quality consists of bounding the allowed divergence. To this end, we first define the notion of quality

atom:

Quality atom ::= (Data, Quality measure, Threshold, Mode)

The semantics of a quality atom is the following. The user chooses a data a, at the desired level of granularity,

then chooses a quality measure m and a thereshold s, in order to bound the divergence for the data, i.e. m(a) ≤ s.

Finally, the mode allows specifying the nature of the measured divergence, freshness or validity.

Mode ::= Freshness | Validity

Then we define a quality formula as a logical combination of quality atoms:

Quality formula ::= Quality atom
| Quality formula ∨ Quality formula
| Quality formula ∧ Quality formula

Combining several quality atoms in a quality formula is useful for specifying quality for different data at the

same time, as well as for specifying complex quality definitions for one or several data. It is also useful for specifying

the required data quality for the results of a query, by associating the formula with a query, as well as limiting the

divergence of a node by associating the formula with a node.

3 Data Quality Management

In this section, we describe data quality management in a database cluster. First, we present our database cluster

architecture. Then, we present in more details data quality evaluation.

3.1 Database Cluster Architecture

Figure 4 shows our database cluster architecture, which is based on [12]. Access to autonomous databases is provided

by a middleware layer, through the JDBC interface. Applications send transactions to the middleware which selects

the nodes for execution, according to the required data quality. The results are then sent back to applications. There

are several advantages in a middleware solution : independence from the underlying local DBMSs; easy migration

of existing databases; support of DBMS heterogenity, etc. For performance reasons, the different modules of the

middleware can be replicated at several cluster nodes, provided that the metadata directory is shared by these nodes.

This can be achieved by replicating the directory or using distributed shared memory [10].

We manage data quality with two different policies: query-oriented or cluster-oriented. In the query-oriented

policy, data quality is associated with queries and is related with the data read by the query. In the cluster-oriented

policy, data quality is associated with cluster nodes and gives a lower bound for the quality of the data stored in the

node. The two policies can be combined: cluster nodes are maintained at a given quality level for all the queries but

a query may specify whether it requires a higher quality. In all cases, the middleware handles update propagations

in order to guarantee that user requirements are met. All necessary information is specified in XML without any

modification to application code and stored in a metadata repository.

A major component in our middleware is the quality evaluation module used to evaluate the quality of a node

based on its current state. If the quality is not sufficient, it computes a upgrade plan. If the required quality is related

to freshness, the upgrade plan includes a sequence of update propagations to apply in order to reach the desired

freshness. If the required quality is related to validity, the upgrade plan includes a mechanism ensuring that data

read is valid enough, either by forcing the serialization order at the node (if allowed by the underlying DBMS) or by

forcing transactions to wait in order to avoid introducing invalid values.

The other modules work as follows. The transaction manager receives transactions from applications. If a

transaction is a query, it retrieves the required data quality associated with the query. For each node able to execute

the transaction (according to the node’s type), it asks the quality evaluation module to compute the node’s upgrade

plan. In the best case, the node has already a sufficient quality and the upgrade plan is empty. Then, the router

chooses the best node for executing the transaction, by evaluating for each node a cost function which takes into

account the node’s current load and the cost of the upgrade plan. The node manager maintains data quality on

nodes. It retrieves the cluster-oriented quality policy from the metadata repository and triggers updgrade plans at

the nodes to maintain their quality above the limit imposed by the policy. Communication and synchronization are

managed by the execution module. It sends transactions and updgrade plans to nodes, waits for their validation and

gets the results of local executions. Then it updates the information about cluster node states. Transactions are

committed according to a global order.

APPLICATION

local
DBMS

local
DBMS

local
DBMS

local
DBMS

asks

updates

notifies eventasks

...

quality to maintain on N ?

XML EDITOR

transaction T
(with updates or
read−only)

data quality
spécifications

JDBC DRIVER INTERFACE

REPOSITORY
METADATA

quality specified by T ?

TRANSACTIONS QUALITY

MODULE

MANAGEMENT EVALUATION

MODULE MODULE

MANAGEMENT

NODES(quality, node)

node’s upgrade
plan

(quality, node)

node’s upgrade
plan

ROUTING
MODULE state

nodes’

T, chosen_node_id, plan
MODULE

EXECUTION

 node_id, plan

D
A

TA
 M

A
N

A
G

E
M

E
N

T M
ID

D
LE

W
A

R
E

DB DB DBDB

USER

T, {node_id, plan}

Figure 4: System architecture

3.2 Data Quality Evaluation

Data quality is evaluated based on which transactions have been sent and which have been executed at each node2.

To know what are the effects of a transaction, we combine knowledge coming from parsing transaction code and

2Since local DBMS are considered black-box, we cannot use the knowledge available in the DBMS engine

dynamic knowledge obtained at execution time, return values coming from the JDBC driver and log records obtained

by log sniffing 3. The algorithm for data quality evaluation is shown in Figure 5. The quality of data a on node i

for a measure m, given by the function getQuality(a,m,i), is evaluated as the divergence between the value of a on

i and the reference value of a. For each transaction t waiting on data copy ai, (i.e. t ∈ Wait(ai)), the algorithm

updates the evaluated quality according to t’s effects. For that, it computes the quantity of change made by t on a

for measure m through function evalModifs(t,a,m). Then it updates the corresponding divergence counter.

getQuality(a, m, i){

// m measure
// a data

// i node

 quality = 0
 FORALL t in W DO

return quality
 ENDFOR

W = Wait()ia

 quality = updateQuality(quality, m, evalModifs(t,a,m));

Figure 5: Algorithm for evaluating data quality

Computing Wait(ai) requires evaluating, among all the transactions waiting at node Ni, which ones are accessing

data a. Obviously, if the granularity is the whole database, all the waiting transactions are concerned. If a has finer

granularity, some transactions may not access a and thus are not concerned with a’s quality. The simplest method

for filtering transactions is parsing the transactions code. It is well adapted for relation and attribute granularity,

since retrieving the corresponding information from transactions code is straightforward. For tuple granularity, it is

not sufficient in the general case, and log sniffing is necessary, since it is not possible to know exactly a priori (from

the transaction code) which tuple(s) will be updated, inserted or deleted.

Evaluating the modifications performed by a transaction t on data a depends on the considered measure m:

• EvalModifs(t,a,NbOp) is always equal to 1.

• EvalModifs(t,a,NbElt) = ntt * nct,

where ntt (resp. nct) is the number of tuples (resp. columns) accessed by t. If t is a single statement

transaction, ntt is the value returned by the JDBC driver after executing t. Otherwise, the information is

obtained by log sniffing. nct is inferred during by parsing t’s code.

• EvalModifs(t,a,Age) = θ - dateSent(t,i),

where θ is the date when the function is evaluated and dateSent(t,i) is the date when t is sent to node i.

dateSent(t,i) is an under-estimation of the date when a is actually updated by t at node i. It guarantees

that the computed quality is always an under-estimation of the actual quality, thus that the results given to

applications are correct.

• EvalModifs(t,a,Num) is the most difficult measure to evaluate. It is obtained by combining code parsing and

dynamic information (ntt or log sniffing). For instance:

EvalModifs(“update R set attr=attr+10”, R.attr, Num) = 10*ntt

3For instance, in our implementation, we use the Oracle Logminer tool

4 Experimental Validation

In this section, we describe an experimental validation using our prototype. We present interesting results regarding

the impact of data freshness and the level of granularity on query performance. Further details and results can be

found in [12].

4.1 The Refresco Prototype

In order to validate our approach, we developped a prototype, called Refresco, (Routing Enhancer through FREShness

COntrol). It has been developped in the Leg@net project4, whose objective was to demonstrate the viability of the

ASP model using a database cluster for pharmacy applications in France. Refresco implements the database cluster

architecture and algorithms we proposed for for a mono-master configuration. The prototype is implemented in Java

(jdk 1.4) and runs on a Linux 5 node cluster, each node running the Oracle 8i server. All nodes (Pentium IV 2Ghz,

512 Mb RAM) are interconnected by a switched 1 GBit/s Fast-Ethernet local area network. The database is fully

replicated on four nodes. The middleware layer runs on a fifth node.

We generated the database according to the TPC-R benchmark [17] with a scaling factor of 1. The workload

contains OLTP transactions and OLAP queries sending one SQL request (transaction or query) every 5 ms. The

transactions correspond to the TPC-R refresh function RF1 while the queries are randomized TPC-R queries. The

workload is composed of six transaction streams and six query streams. The average response time, obtained by

executing transactions on a load-free single Oracle Server node is about 4ms for OLTP transactions while it is more

than two minutes for OLAP queries. One node of the cluster is dedicated to OLTP transactions (the master node)

while queries are sent exclusively to the slave nodes. Each experiment has a duration of 20 minutes.

4.2 Impact of Freshness

In these experiments, we focus on how the freshness policy influences transaction and query performance. We use

measures Age, NbOp and NbElt and the database granularity. We vary the freshness threshold from 0 to 1200s

for measure Age, from 0 to 160000 transactions for measure NbOp and from 0 to 240000 tuples for measure NbElt.

Maximum limits for the threshold are defined according to the experiment duration (20 minutes). Over this limit,

freshness thresholds become so high that even the most obsolete slave node would be fresh enough to satisfy the

query. Any higher threshold would give the same results.

An interesting result of [12] shows that the update transaction throughput at the master node is not affected

by the execution of queries. Thus, transactions are not slowed down by queries. This is a direct consequence of

choosing a mono master configuration where the master node does not perform queries. Though obvious, this result

is important if we remember that in our context, we must guarantee that update transactions, generated by front-office

applications, are interactive.

Figure 6 shows that relaxing data freshness improves query throughput significantly. For instance, with a freshness

threshold of 300s for measure Age (i.e. data may be out-of-date since at most 5 minutes), twice as many queries

are performed within the same time as when the freshness threshold is 0 (i.e. data must be perfectly fresh). The

query throughput is 70% percent as good as the reference throughput, obtained when no transaction is applied on

the master node (last column on the right). This is important in pharmacy applications where statistics on stocks

may be computed on-line but are usually acceptable even if computed with data stale since hours or even days.

Other results show that the routing time used by the router to choose the best node is always negligible and

decreases as the threshold increases since the router reaches faster the required freshness level. The time a query

waits for refreshment also decreases with respect to the threshold and can be considered negligible with a threshold

greater than 600s, i.e. half of the experiment total time. This is explained by the fact that with a larger threshold,

nodes need less refreshment to fulfill the freshness requirements of queries. Of course, this means that each node

becomes less and less fresh. However, outside of OLAP intensive periods, slave nodes are less busy and can be used

for (possibly background) refreshment.

4Project sponsored by the RNTL between LIP6, Prologue Software and ASPLine.

Figure 6: Influence of freshness on query throughput

4.3 Impact of Granularity

We now investigate how the granularity of freshness atoms impacts query performance. To this end, we define the

conflict rate of a workload as the proportion of potential conflicts between transactions and queries. Thus, it only

makes sense at granularity levels finer than the entire database (it is always equal to 1 at the database level). The

same workload was run with measure Age, first at the database level, then at the relation level with a conflict rate

of 0.15. The first results show that with such a low conflict rate, the mean query response time is divided by 4.

Figure 7: Load balancing of queries on slave nodes

Figure 7 shows, for a conflict rate of 0.15, how query execution is balanced at the slave nodes for database and

relation granularities. At the database granularity level, queries are simply balanced at the slave nodes depending on

the load, in a classical way. But even without conflict, queries must wait until their execution node is perfectly fresh

since their freshness is specified at the database level. At the relation level, slave nodes appear to get specialized:

node 2 gets non conflicting queries while other queries are balanced between node 1 and node 3. Queries without

conflict are executed without waiting because they need not be refreshed. This explains why slave node 2 receives

much more queries than other nodes. Since conflicting queries need refreshment, they require more resources so two

nodes are used.

This locality-oriented phenomenon stems from the routing algorithm behavior, because refreshment cost is one

criterion. The nodes where conflicting queries have been executed get fresher than the nodes with only non conflicting

queries. Thus, these fresh nodes are better candidates for the next conflicting queries.

5 Related work

There are several projects close to ours [1, 3, 13, 21, 6, 15, 16, 11]. However, they all have one or more of the following

limitations: are specific to some kind of data (e.g. XML documents), model one kind of freshness, do not take updates

into account, require substantial modification to the DBMS transaction manager, or do not model divergence at a

granularity finer than the entire database. Among the most interesting approaches, we distinguish the ones which

only handle data freshness and the ones which include control over invalid data.

Trading data freshness for performance has received much attention in the litterature. In the context of mono-

master replication, the FAS prototype of ETH Zürich [16] shows substantial gains in query response time. However,

their freshness model is very simple, with only one freshness measure, equivalent to our measure Age. Furthermore,

they only consider one level of granularity for access atoms : the entire database. In the context of data shipping,

where data is cached at the client side, relaxing freshness allows avoiding querying the remote server in case of

cache miss. In [1], cached data remain available until a freshness threshold is reached. Different measures are

proposed but they do not take into account data granularity. The Trapp Project at Stanford [13] adresses the

problem of precision/performance trade-off by allowing users to specify precision constraints on queries. It focuses on

optimizing the computation of aggregate queries over different cache sites by reducing the cost of wide-area network

communication but requires a heavy modification of the local transaction managers. [9] proposes temporal guarantees

on freshness of cached data, by adding the concept of consistency class : all the data of a same class belongs to the

same snapshot. They add a new SQL clause to specify freshness requirements in queries, which requires a modification

of the existing application code.

Querying invalid data has also received much attention. Introduced by [8], it led to the ANSI standard on

isolation levels [2], some of them being implemented in the current DBMS products. However, if isolation levels allow

for controling which phenomena users accept to occur, they do not provide a way to measure the divergence. More

recent works have proposed divergence control including freshness and validity. Epsilon transactions [3] provide a

nice theoretical framework for divergence control, with different consistency metrics. However, it requires to alter

the DBMS transaction manager, since divergence control is done at the lock manager level. The TACT middleware

layer [21, 22] implements the continous consistency model. However, reads and writes are mediated individually, not

at the transaction level, which is not appropriate for the management of autonomous applications.

6 Conclusion

In a database cluster with lazy replication, controlling the quality of replicated data based on users’ requirements

is important to improve performance. In this paper, we proposed a general model of data quality where freshness

and validity are treated in a uniform way. This model allows users to specify the level of quality for their queries

with different levels of granularity and different divergence measures. For each measure, we provided an efficient

evaluation method useful for routing queries and maintaining replicated data at a required level of quality;

We proposed a database cluster middleware that exploits quality requirements to perform query load balancing

on autonomous databases. Our middleware solution has several advantages: independence from the underlying local

DBMSs; easy migration of existing databases; support of DBMS heterogenity, etc.

We implemented our approach in our Refresco prototype. The results show that freshness control can help increase

query throughput significantly. They also show significant improvement when freshness requirements are specified

at the relation level rather than at the database level. Refresco has been first presented in [12]. This paper mainly

differs from [12] by two major contributions: (1) it includes quality based on validity, not only on freshness, and (2),

almost all the replication configurations are considered for defining the architecture and the quality measures, not

only the mono-master replication.

Future work will include the definition of additional measures and the support for finer levels of granularity (e.g.

tuple level). We will also port our Refresco prototype on a 64 node cluster to perfom larger-scale experiments. Finally,

we will investigate support of multi-master and partial replication.

References
[1] R. Alonso, D. Barbará, and H. Garcia-Molina. Data caching issues in an information retrieval system. ACM

TODS, 15(3):359–384, 1990.

[2] American National Standard for Information Systems - Database language - SQL, 1992.

[3] D. Barbará and H. Garcia-Molina. The demarcation protocol: A technique for maintaining constraints in
distributed database systems. VLDB Journal, 3(3):325–353, 1994.

[4] R. Gallersdörfer and M. Nicola. Improving performance in replicated databases through relaxed coherency. In
Int. Conf. on VLDB, 1995.

[5] S. Gançarski, H. Naacke, E. Pacitti, and P. Valduriez. Parallel processing with autonomous databases in a
cluster system. In Int. Conf. On Cooperative Information Systems (CoopIS), 2002.

[6] T. Grabs, K. Böhm, and H.-J. Schek. Scalable distributed query and update service implementations for XML
document elements. In Workshop on Research Issues in Data Engineering, 2001.

[7] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a solution. In Int. Conf. ACM
SIGMOD, 1996.

[8] J. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger. Granularity of locks and degrees of consistency in a shared
data base. In IFIP Working Conference on Modelling in Data Base Management Systems, pages 365–394, 1976.

[9] H. Guo, P.-A. Larson, and J. Goldstein. Relaxed currency and consistency : How to say ”good enough” in sql.
In Int. Conf. ACM SIGMOD, 2004.

[10] P. Keleher, A. Cox, and W. Zwaenepoel. Lazy release consistency for software distributed shared memory. In
Proceedings of the Int. Symp. On Computer Architecture (ISCA’92), pages 13–21, 1992.

[11] A. Labrinidis and N. Roussopoulos. Balancing performance and data freshness in web database servers. In Int.
Conf. on VLDB, 2003.

[12] C. Le Pape, S. Gançarski, and P. Valduriez. Refresco : Improving query performance
through freshness control in a database cluster. In Int. Conf. On Cooperative Information Systems (CoopIS),
2004.

[13] C. Olston and J. Widom. Offering a precision-performance tradeoff for aggregation queries over replicated data.
In Int. Conf. on VLDB, 2000.

[14] T. Özsu and P. Valduriez. Distributed and parallel database systems - technology and current state-of-the-art.
ACM Computing Surveys, 28(1), 1996.

[15] U. Röhm, K. Böhm, and H.-J. Schek. Cache-aware query routing in a cluster of databases. In Int. Conf. On
Data Engineering (ICDE), 2001.

[16] U. Röhm, K. Böhm, H.-J. Schek, and H. Schuldt. Fas - a freshness-sensitive coordination middleware for a
cluster of olap components. In Int. Conf. on VLDB, 2002.

[17] Transaction Processing Performance Council. Tpc-r : a business reporting, decision support benchmark.
http://www.tpc.org/tpcr/default.asp.

[18] K.-L. Wu and C. Pu. Divergence control algorithms for epsilon serializability. Distributed and Parallel Databases,
3(1), 1995.

[19] K.-L. Wu, P. S. Yu, and C. Pu. Divergence control for epsilon-serializability. In Int. Conf. On Data Engineering
(ICDE), 1992.

[20] H. Yu and A. Vahdat. Design and evaluation of a continuous consistency model for replicated services. In Int.
Conf. on Operating Systems Design and Implementation, 2000.

[21] H. Yu and A. Vahdat. Efficient numerical error bounding for replicated network services. In Int. Conf. on
VLDB, 2000.

[22] H. Yu and A. Vahdat. Design and evaluation of a conit-based continuous consistency model for replicated
services. ACM TOCS, 20(3):239–282, 2002.

