
Fine-grained Refresh Strategies for Managing
Replication in Database Clusters

Stéphane Gançarski Cécile Le Pape Hubert Naacke

Laboratoire d’Informatique de Paris 6, Paris, France
email : Firstname.Lastname@lip6.fr

Abstract

Relaxing replica freshness has been exploited
in database clusters to optimize load balanc-
ing. In this paper, we propose to support both
routing-dependant and routing-independent
refresh strategies in a database cluster with
multi-master lazy replication. First, we pro-
pose a model for capturing refresh strategies.
Second, we describe the support of this model
in a middleware architecture for freshness-
aware routing in database clusters. Third, we
describe an algorithm for computing refresh
graphs, which are the core of all the refresh
strategies.
Keywords: replication, database cluster, load
balancing, refresh strategy.

1 Introduction

Database clusters provide a cost-effective alternative
to parallel database systems, i.e. database systems on
tightly-coupled multiprocessors. A database cluster
[10, 9, 26, 27] is a cluster of PC servers, each run-
ning an off-the-shelf (“black-box”) DBMS and holding
a (partial) replica of the database. Since the DBMS
source code is not necessarily available and cannot be
changed to be “cluster-aware”, parallel database sys-
tem capabilities such as load balancing must be imple-
mented via middleware.

Managing replication in database clusters has re-
cently received much attention. As in distributed
databases, replication can be eager (also called syn-
chronous) or lazy (also called asynchronous). With
eager replication, a transaction updates all replicas,
thereby enforcing the mutual consistency of the repli-
cas. By exploiting efficient group communication ser-
vices provided by a cluster, eager replication can be
made non blocking (unlike with distributed transac-
tions) and scale up to large cluster sizes [14, 15, 25, 13].
With lazy replication, a transaction updates only one
replica and the other replicas are updated (refreshed)
later on by separate refresh transactions [22, 23].

With lazy replication, two different problems may
occur. First, replicas may diverge if the same data is
updated simultaneously in two different nodes. This is
the well known problem of replica control which must
enforce eventual consistency : if updates stop, replicas
must eventually converge to the same state. Second, a
(read-only) query executed on a replica which has not
been synchronized yet may read inconsistent and/or
stale data. We call this the query control problem.
Different strategies have been proposed to solve this
problem : wait until data become consistent and/or
fresh, or accept to read “almost consistent/fresh” data
[11, 17, 27, 1, 20, 30, 3]. The client specify its consis-
tency/freshness requirements while the system guaran-
tees them with an adequate update propagation strat-
egy. Little work has been done to consider these two
problems together. We think that performances can
greatly benefit from controlling replica and queries si-
multaneously, thanks to a uniform load balancing. In
our approach, replicas are controlled in a preventive
way : transactions which perform updates are prop-
agated with respect to a global transaction ordering
graph (TOG). Conflicts are prevented because updates
are executed on all nodes in compatible orders. A
transaction is executed on a node only when all trans-
actions preceding it have been already executed on
the node. Queries are not distributed thus they al-
ways read consistent states, though maybe stale. The
problem of query control reduces to controlling the
replica freshness, which reflects the distance between
the state of the replica and the most recent state of
the corresponding data. In this context, we treat both
replica and query control uniformly as a refresh prob-
lem, which can be stated as follows : given an dababase
cluster state and a request (transaction or query), eval-
uate for each node which transactions should be prop-
agated before routing the request to the node such
that (1) no unnecessary transaction is propagated, (2)
the local execution order is compatible with the global
TOG, (3) the results satisfy the freshness requirements
of the request, and (4) the choice of the node minimizes
the request response time.

We make the distinction between routing-dependent

and routing-independent refresh strategies. The
routing-dependant strategy (or On-demand) works as
follows: if the load balancer selects an underloaded
node that is not fresh enough for an incoming request,
it first sends refresh transactions to that node before
sending the query. It is not sufficient since the fresh-
ness level of some nodes may get lower and lower,
thus increasing the cost of refreshment. Thus, we add
routing-independant refresh strategies, that are trig-
gered based on events other than routing, e.g. when a
node is too stale, idle or little busy, or after some time
from the last refreshment. There are several possible
refresh strategies, according to the application work-
load. For instance, if the workload is update-intensive
and if queries are rare and require a perfect freshness,
then it is better to refresh nodes frequently, e.g. as
soon as possible, in order to take advantage of periods
when nodes are query-free. On the contrary, when the
workload is query intensive but queries do not require
high freshness, it is better to refresh only when neces-
sary, in order to not overload nodes with unnecessary
refreshment.

Many refresh strategies have been proposed in the
context of distributed databases, data warehouse and
and database clusters. A popular strategy is to prop-
agate updates from the source to the copies as soon
as possible (ASAP), as in [4, 5, 7]. Another simple
strategy is to refresh replicas periodically [6, 19] as in
data warehouses [8]. Another strategy is to maintain
the freshness level of replicas, by propagating updates
only when a replica is too stale [29]. There are also
mixed strategies. In [21], data sources push updates to
cache nodes when their freshness is too low. However,
cache nodes can also force refreshment if needed. In
[17], an asynchronous Web cache maintains material-
ized views with an ASAP strategy while regular views
are regenerated on demand. Refreshment in [27] is in-
terleaved with query scheduling which makes difficult
to analyze the impact of the refresh strategy itself. In
all these approaches, refresh strategies are not chosen
to be optimal with respect to the workload. In par-
ticular, refreshment cost is not taken into account in
the routing strategy. There has been very few stud-
ies of refresh strategies and they are incomplete (ex.
[12]). For instance, they do not take into account the
starting time of update propagation [28, 16] or only
consider variations of ASAP [24].

This paper has three main contributions, which
clearly distinguish it from our previous work [18].
First, we propose a model which allows describing and
implementing refresh strategies, independent of other
load balancing issues. Second, we describe the sup-
port of this model in our prototype. It is based on
the concept of refresh graph whose execution brings a
node to a required level of freshness while guarantee-
ing global serializability. For transactions, it brings
the node to a perfectly fresh state, in order to be com-

patible with the global order. For queries, it brings
the node to the required level of freshness specified by
the application. Routing independant strategies are
also described through refresh graphs, one for each
node involved in the strategy. Third, we give an al-
gorithm that computes minimal refresh graphs with
respect to a given freshness requirement. In com-
parison, [18] is based on a mono-master replication,
based on refresh sequences, while this paper presents
a multi-master replication scheme based on refresh
graphs. Furthermore, our previous work had only
a routing-dependant refresh strategy while here we
added routing-independant refresh strategies.

The paper is organized as follows. Section 2 de-
scribes our database cluster architecture, with empha-
sis on load balancing and refreshment. Section 3 de-
fines our model to describe refresh strategies. Section 4
describes the algorithm for computing refresh graphs.
Section 6 concludes.

2 Database Cluster Architecture

CLIENT

REQUEST FACTORY

FRESHNESS EVAL
event
send

LOAD
BALANCER

JDBC DRIVER INTERFACE

M
ID

D
LE

W
A

R
E

LA
Y

ER

XML EDITOR

METADATA
REPOSITORY

XML

METADATA

SCHEDULER

REFRESH
MANAGER

REFRESHER

LOAD EVAL.

forward request

forward request
rmetadata

read

edit metadata

ROUTER
update state
read state

CLUSTER STATE MGR

update state
ask for refresh ask for refresh

send query or transaction send refresh graph

send request (query or transaction)

N N

. . . .

p1

TOG MGR

CLOCK

N3

NODE

N2

NODE NODE NODE

request or refresh graphrequest or refresh graph request or refresh graph request or refresh graph

Figure 1: Multi-master replicated database architec-
ture

Figure 1 gives an overview of our multi-master
database cluster middleware. We assume that the
database composed of relations R1, R2, . . . , Rk is fully
replicated on nodes N1, N2, . . . , Np. We note Ri

j the
replica of relation Ri on node Nj . Our middleware
receives requests (transactions or queries) from the ap-
plications through a standard JDBC interface. All ad-
ditional information necessary for routing anf refresh-
ing is stored in a metadata repository and managed
separately of the requests. The metadata repository
includes for instance the default level of freshness re-
quired by a query. It also includes information about
which part of the database is read and which part is
updated by the requests, thus enabling the detection of

potential conflicts between updates and queries. Our
architecture preserves the autonomy of both applica-
tions and databases which can remain unchanged, as
required in ASP [9] for instance.

To support general applications such as ASP, the
access to the database is through stored procedures :
clients requests are procedure calls. The request fac-
tory enriches requests with metadata obtained from
the repository and dynamic information provided by
the clients (e.g. parameters for stored procedures).
Then it sends the requests to the scheduler.

As we focus on refresh policies, we use here a simple
FIFO scheduling : requests are sent to the router in
the same order they arrive to the scheduler.

Dynamic information such as transaction commit
time on nodes, data freshness on nodes, estimated
nodes load, is maintained by the cluster state man-
ager. The information related to each transaction is
maintained until it has been executed on every node,
after which it is removed. It also maintains a transac-
tion ordering graph (TOG). Intuitively, a transaction
T precedes a transaction T ′ in the TOG if T ′ arrives
in the system when T is currently running and T po-
tentially conflicts with T ′. The load evaluation mod-
ule evaluates the nodes’ load by the summing the re-
maining execution times of running requests on nodes.
The execution time of a request is estimated through
a weighted mean algorithm based on the previous ex-
ecutions of the request.

The router implements an enhanced version of
SELF (Shortest Execution Length First) [2], which
includes the estimated cost of refreshing a node on-
demand. Upon receiving a request, it computes a cost
function for every node and selects for execution the
node which minimizes the cost function, thus minimiz-
ing the request response time. The cost of executing
a request on a node is composed of the node’s load
plus the cost of preparing the node for executing the
request. Preparing a node consists in executing a re-
fresh graph on the node prior to request execution.
The refresh graph is a minimal subgraph (in the sense
of inclusion) of the TOG which, when applied to the
node, makes it fresh enough for the request (perfectly
fresh if the request is a transaction). Transactions in
the refresh graph are executed on the node according
to the refresh graph (partial) order.

Executing the refresh graph for a request is called
routing-dependent (on-demand) refreshment. On the
other side, the refresh manager handles routing-
independent refreshment. According to the refresh
strategy, it receives events coming from different part
of the cluster state manager: load evaluation module,
freshness evaluation module or external events such as
time. It then triggers the selected routing-independent
refresh policy which eventually asks the refresher mod-
ule to perform refresh graphs. Building a refresh graph
depends on the nature of the refresh strategy. The

alogrithm that performs this task is presented in Sec-
tion 4 . Whenever the refresher sends refresh graphs
to a node, it updates the cluster state for further fresh-
ness evaluations by the corresponding module.

3 Modeling Refresh Strategies

In this section, we propose a model for defining various
refresh strategies. It can be used as a basis to help a
DBA specifying when, to which nodes, and how much
to refresh. The refresh model is based on a freshness
model which allows measuring the staleness of a slave
node with respect to the master node.

3.1 Conflicts detection

We detect conflicts based only on procedure codes, i.e.
the procedure code is known in advance. Thus we de-
tect potential conflicts, at the relation level, because re-
lations potentially read or written by a request can be
easily infered from the procecure code. Each request
req is associated to the set of relation its potentially
reads (resp. writes), called req.read (resp. req.write).
A query Q potentially conflicts with a transaction T if
T potentially writes a data that Q potentially reads. A
transaction Ti potentially conflicts with another trans-
action Tj if Ti potentially writes a data that Tj poten-
tially reads or writes. Potential conflict detection is
more formally described in [18].

3.2 Freshness Model

In [18] we introduced several freshness measures. For
simplicity in this paper, we consider only measure Age.
Age(Ri

j) denotes the maximum time since at least one
transaction updating Ri has committed on a node and
has not yet been propagated on node Nj , i.e.

Age(Ri
j) = Max(now() - T.ct), T ∈ U(Ri

j)
0 if U(Ri

j) = ∅

where U(Ri
j) is the set of transactions updating Ri

and not yet propagated to node Nj and T.ct is the
commit time of T on the first node it has validated.
Measure Age allows modelling queries such as “Give
the value of X as it was no later than Y minutes ago”.
It is also useful for queries accessing history relations.
Other freshness measures defined in [18] can be used,
according to applications needs and can even be com-
bined.

The freshness level of a request Req is a conjunction
of conditions of the form Age(Ri) < thi, for each Ri ∈
Req.write ∪Req.read, where thi is the maximum age
(threshold) of Ri tolerated by Req. The default value
of thi is 0 for both queries or transactions (they must
access perfectly fresh relations). If Req is a query, thi

can be overwritten by the user in order to increase the
tolerated freshness. In all cases, a node Nj is fresh
enough to satisfy Req if the freshness level of Req is
satisfied on Nj . The freshness level of Req is stored in

the vector Req.FL[1..k], such that Req.FL[i] = thi if
Ri is accessed by Req, and ∞ otherwise.

3.3 Refresh Model

Refresh Strategy ::= ({Event}, Dest. , Quantity)
Event ::= Routing(Nj,Req)

| Underloaded(Nj,limit load)
| Stale(Nj,Ri, limit age)
| Trans commit(Nj,T)
| Period(t)

Dest. ::= { node }
Quantity ::= Age[1..k]

Figure 2: Refresh model

We propose to capture refresh strategies with the
model in Figure 2. A refresh strategy is described
by the triggering events which raise its activation, the
nodes where the refresh transactions are propagated
and the quantity of refreshment to do. A refresh strat-
egy may handle one or more triggering events, among:

• Routing(Nj , Req) : a request Req is routed to
node Nj .

• Underloaded(Nj , limit load): the load of node Nj

decreases below the limit load value.

• Stale(Nj,Ri, limit age) : the age of Ri
j increases

above limit age value. In other words, the fresh-
ness atom Age(Ri) < limit age is no more satis-
fied on node Nj .

• Trans commit(Nj,T) : transaction T has com-
mited on node Nj .

• Period(t) : triggers every t seconds.

As soon as an event handled by the refresh man-
ager is raised, the refresher computes a refresh graph
to propagate. The refresh graph can be sent to one
or several nodes. For instance, Routing(Nj , Req) usu-
ally activates a refreshment only on node Nj while
Period(t) usually activates a refreshment on all the
nodes.

Finally, the refresh quantity of a strategy indicates
“how many” refresh transactions are part of the re-
fresh graph for each node to refresh. The Age[1..k]
vector expresses for each Ri, the age that must not be
overpassed after applying the refresh graph. The re-
fresh graph is thus a minimal subgraph (in the sense of
inclusion) to make the node fresh enough with respect
to Age[1..k]. Note that the default value for Age[i] is
∞.

We apply our refresh model to the following strate-
gies. Other strategies are possible, we give here some
examples inspired from the state-of-art strategies.

3.3.1 On-Demand.

The On-Demand strategy is triggered by a
Routing(Nj , Req) event. It sends a minimal re-
fresh graph to node Nj to make it fresh enough for
Req, i.e. Age[1..k] = Req.FL.

3.3.2 ASAP

The ASAP (As Soon As Possible) strategy is triggered
by a trans commit(Nj,T) event. It sends a refresh
graph to all the nodes where T has not been sent yet.
As ASAP strategy maintains nodes perfectly fresh,
the refresh is specified with Age[i] = 0,∀i s.t. Ri ∈
T.write ∪ T.read.

3.3.3 Periodic(t,Ri, limit age)

The Periodic strategy is triggered by a period(t) event.
It sends refresh graphs to all nodes to keep the stal-
eness of Ri under the limit age value. Thus, the re-
fresh graph for Nj is defined by Age[i] = limit age. If
limit age = 0, then the strategy brings Ri to a perfect
freshness on every node.

3.3.4 ASAUL(limit load, limit age)

The ASAUL (As Soon As underloaded) strategy is
triggered by a Underloaded(Nj,limit load) event. It
sends a refresh graph to Nj to bring the staleness
of all the relations replica on Nj under a limit age
value. Thus, the refresh graph for Nj is defined by
Age[i] = limit age,∀i = 1 . . . k

3.3.5 ASATS(limit age)

The ASATS (As Soon As Too Stale) strategy is trig-
gered by a Stale(Nj,Ri, limit age) event. It sends a
refresh graph to Nj to make the local copy Ri

j perfectly
fresh, i.e. Age[i] = 0.

3.3.6 Hybrid Strategies.

Refresh strategies can be combined to improve perfor-
mance. For instance, the interaction between routing-
dependent (On-Demand) and routing-independent
strategies (all other strategies) allows using any node
for executing any request, since On-Demand always
refreshes the node where the request is routed before
sending the request. Another example is to create dif-
ferent periodic strategies for different relations with
different periods, allowing to associate a smaller pe-
riod for “hot-spot” relations and a higher for rarely
requested relations.

4 Computing refresh graphs

In this section, we present our method to compute
refresh graphs. We first introduce the data structures,
and present the algorithms.

4.1 Data structures and auxiliary functions

• TOG =
(
{T},≺

)
is the transaction ordering

graph, defined as a set of transaction {T} and
a partial order ≺. TOG is obviously acyclic since
its order is compatible with the transaction arrival
time.

• Each transaction T is associated with attributes
T.ct (commit time, see Section 3.2) and T.write,
(set of relations potentially written by T , see Sec-
tion 3.1).

• Each node Nj is associated with an attribute
Nj .yet (Youngest Executed Transactions) which
is the set of the youngest (w.r.t. ≺) transactions
already executed on Nj . Attribute Nj .yet can be
seen as the current freshness state of node Nj .

• Function Leaves() returns the leaves of acyclic
graph TOG.

• Function Parents(T) returns the parents of T in
the TOG.

• Vector Age[1..k] is the specification of the refresh
graph to compute (see Section 3.3).

4.2 Algorithm

The algorithm is shown on Figure 3. Function
Refresh graph(Age[1..k],Nj) computes a minimal re-
fresh graph for refreshing node Nj in order to fulfill
freshness requirements specified by vector Age[1..k].
The main idea is, starting from the leaves of the
TOG, to recursively include in the refresh graph
all the necessary transactions, detected by function
Necessary(T,Age[1..k]). The process stops when
reaching transactions already executed on Nj , i.e.
transactions belonging to Nj .yet. For sake of simplic-
ity, we do not handle individual precedences among
transactions, they can be deduced from the ≺ prece-
dence order. The age of data on node Nj is computed
based on the cluster current time when the algorithm
starts.

5 Conclusion

In this paper, we proposed a refresh model that al-
lows capturing state-of-the-art refresh strategies in a
database cluster with multi-master lazy replication.
We distinguish between the routing-dependent (or on-
demand) strategy, which is triggered by the router, and
routing-independent strategies, which are triggered by
other events, based on time-outs or on nodes state.
The on-demand strategy serves for both query routing,
according to query freshness requirement, and trans-
action routing, in order to guarantee global serializ-
ability based on a global transaction order graph. The
output of any refresh strategy is a refresh graph to be

Function Refresh graph(Age[1..k],Nj)
Tset := ∅
t = now()
for all T ∈ Leaves() do

Tset := Tset ∪ Refresh set(T ,Age[1..k],Nj,t)
end for
return (Tset,≺)

Function Refresh set(T ,Age[1..k],Nj,t)
Nset := ∅
if T ∈ Nj .yet then

return ∅
end if
if Necessary(T ,Age[1..k],t) then

Nset = {T}
end if
for all T ′ in Parents(T) do

Nset := Nset ∪ Refresh set(T ,Age[1..k],Nj,t)
end for
return Nset

Function Necessary(T,Age[1..k],t)
for all Ri ∈ T.write do

if Age[i] ≤ (t− T.ct) then
return true

end if
end for
return false

Figure 3: The algorithm for computing refresh graphs

executed, for each target node. The refresh model al-
lows for specifying the refresh graph to execute in a
simple way, and we give the algorithm which produces
a refresh graph based on its specification. The refresh
manager is independent of other load balancing func-
tions such as routing and scheduling. We are currently
testing the prototype to optimize the implementation
of the Refresh graph algorithm. We plan to run it with
different workload types in order to determine the best
strategy to select with respect to the workload.

References

[1] R. Alonso, D. Barbará, and H. Garcia-Molina.
Data caching issues in an information retrieval
system. ACM Trans. on Database Systems,
15(3):359–384, 1990.

[2] C. Amza, A. Cox, and W. Zwaenepoel. Conflict-
aware scheduling for dynamic content applica-
tions. In Proceedings of the Fifth USENIX Sym-
posium on Internet Technologies and Systems,
March 2003, 2003.

[3] D. Barbará and H. Garcia-Molina. The demarca-
tion protocol: A technique for maintaining con-
straints in distributed database systems. VLDB
Journal, 3(3):325–353, 1994.

[4] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. J. O’Neil, and P. E. O’Neil. A critique of ansi
isolation levels. In ACM SIGMOD Int. Conf.,
1995.

[5] Y. Breitbart, R. Komondoor, R. Rastogi, S. Se-
shadri, and A. Silberschatz. Update propagation
protocols for replicated databates. In ACM SIG-
MOD Int. Conf., pages 97–108, 1999.

[6] D. Carney, S. Lee, and S. Zdonik. Scalable appli-
cation aware data freshening. In IEEE Int. Conf.
on Data Engineering, 2002.

[7] P. Chundi, D. J. Rosenkrantz, and S. S. Ravi. De-
ferred updates and data placement in distributed
databases. In IEEE Int. Conf. on Data Engineer-
ing, pages 469–476, 1996.

[8] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick,
and H. Trickey. Algorithms for deferred view
maintenance. In ACM SIGMOD Int. Conf., pages
469–480, 1996.

[9] S. Gançarski, H. Naacke, E. Pacitti, and P. Val-
duriez. Parallel processing with autonomous
databases in a cluster system. In Int. Conf. On
Cooperative Information Systems (CoopIS), 2002.

[10] S. Gançarski, H. Naacke, and P. Valduriez.
Load balancing of autonomous applications and
databases in a cluster system. In Workshop on
Distributed Data and Structures (WDAS), 2002.

[11] H. Guo, P.-A. Larson, R. Ramakrishnan, and
J. Goldstein. Relaxed currency and consistency:
How to say ”good enough” in sql. In ACM SIG-
MOD Int. Conf., 2004.

[12] Y. Huang, R. H. Sloan, and O. Wolfson. Diver-
gence caching in client server architectures. In
Proceedings of the Third International Confer-
ence on Parallel and Distributed Information Sys-
tems (PDIS 94), Austin, Texas, September 28-
30, 1994, pages 131–139. IEEE Computer Society,
1994.

[13] R. Jiménez-Peris, M. Patino-Martinez,
B. Kemme, and G. Alonso. Are quorums
an alternative for database replication. ACM
Trans. on Database Systems, 28(3):257–294,
2003.

[14] B. Kemme and G. Alonso. Don’t be lazy be
consistent : Postgres-r, a new way to implement
database replication. In Int. Conf. on Very Large
Data Bases, pages 134–143, 2000.

[15] B. Kemme and G. Alonso. A new approach to de-
veloping and implementing eager database repli-
cation protocols. ACM Trans. on Database Sys-
tems, 25(3):333–379, 2000.

[16] S. Krishnamurthy, W. H. Sanders, and M. Cukier.
An adaptive framework for tunable consistency
and timeliness using replication. In Int. Conf. on
Dependable Systems and Networks, pages 17–26,
2002.

[17] A. Labrinidis and N. Roussopoulos. Balancing
performance and data freshness in web database
servers. In Int. Conf. on Very Large Data Bases,
pages 393–404, 2003.

[18] C. Le Pape, S. Gançarski, and P. Valduriez. Re-
fresco: Improving query performance through
freshness control in a database cluster. In
Int. Conf. On Cooperative Information Systems
(CoopIS), pages 174–193, 2004.

[19] H. Liu, W.-K. Ng, and E.-P. Lim. Scheduling
queries to improve the freshness of a website.
World Wide Web, 8(1):61–90, 2005.

[20] C. Olston and J. Widom. Offering a precision-
performance tradeoff for aggregation queries over
replicated data. In Int. Conf. on Very Large Data
Bases, 2000.

[21] C. Olston and J. Widom. Offering a precision-
performance tradeoff for aggregation queries over
replicated data. In Int. Conf. on Very Large Data
Bases, 2000.

[22] E. Pacitti, P. Minet, and E. Simon. Fast algo-
rithms for maintaining replica consistency in lazy
master replicated databases. In Int. Conf. on
Very Large Data Bases, 1999.

[23] E. Pacitti, P. Minet, and E. Simon. Replica
consistency in lazy master replicated databases.
Distributed and Parallel Databases, 9(3):237–267,
2000.

[24] E. Pacitti and E. Simon. Update propagation
strategies to improve freshness in lazy master
replicated databases. VLDB Journal, 8(3–4):305–
318, 2000.

[25] M. Patino-Martinez, R. Jimenez-Peris,
B. Kemme, and G. Alonso. Scalable Repli-
cation in Database Clusters. In Int. Conf.
on Distributed Computing (DISC’00), pages
315–329, 2000.

[26] U. Röhm, K. Böhm, and H.-J. Schek. Cache-
aware query routing in a cluster of databases. In
IEEE Int. Conf. on Data Engineering, 2001.

[27] U. Röhm, K. Böhm, H.-J. Schek, and H. Schuldt.
Fas - a freshness-sensitive coordination middle-
ware for a cluster of olap components. In Int.
Conf. on Very Large Data Bases, 2002.

[28] Y. Saito and H. M. Levy. Optimistic replication
for internet data services. In Int. Symp. on Dis-
tributed Computing, pages 297–314, 2000.

[29] S. Shah, K. Ramamritham, and P. Shenoy. Main-
taining coherency of dynamic data in cooperative
repositories. In Int. Conf. on Very Large Data
Bases, 1995.

[30] H. Yu and A. Vahdat. Efficient numerical error
bounding for replicated network services. In Int.
Conf. on Very Large Data Bases, 2000.

