Freshness control of XML documents for query load balancing

Stéphane Gancarski, Cécile Le Pape
LIP6, University P.&M. Curie Paris, France
Firstname.Lastname@lip6.fr

Alda Lopes Gangarski

GET/INT, CNRS UMR SAMOVAR, Evry, France
Alda.GancarskiQint-evry.fr

Abstract

We present an approach for controlling the freshness
of replicated XML documents. The main idea is that
read-only transactions may accept to read stale data,
provided they can express an upper bound on the stal-
eness of the data they read. Controlling the freshness
of data accessed by read-only transactions greatly im-
proves load balancing since it allows for choosing a node
for executing the transaction even if it is not perfectly
fresh. Such a routing is based on detecting which parts
of a document are likely to be updated by a given trans-
action. Due to the rich nature of XML, the problem is
quite more complex than for relational SQL data. We
present a new algorithm for conflict detection between
transactions, needed to estimate freshness of data ac-
cording to the missing transactions on a node. We also
present new freshness measures, in order to take into
account the structure/content nature of XML.
Keywords: Freshness control, load balancing, transac-
tion conflict detection, lazy replication

1. Introduction

Data replication is a well known solution for improv-
ing data availability and reducing query response time
through parallelism. This is particularly relevant for
XML documents, which are usually handled by read-
intensive applications such as Web farms or XML ware-
houses. We consider hybrid workloads, composed both
of update transactions and read-only transactions. Up-
dating transactions are composed of at least one up-
date operation (insert, delete, replace, etc.). Read-only
transactions are called queries in the remainder. Some

OWork partially financed by the French ANR Respire Project

projects, such as PowerDB-XML [2], use eager repli-
cation: all the copies of a data are updated by the
same transaction. This offers strong consistency but
at the cost of an overhead that prevents from scaling
up and is not well adapted to large scale networks.
Other project, such as Xyleme [1], use lazy replication :
only one copy is updated by the client transaction,
the other ones being synchronized later through sub-
sequent transactions. This is more flexible but raises
two issues : global serializability and freshness con-
trol. Global serializability, which ensures consistency,
implies that updating transactions must be executed
on all the nodes in compatible orders. Freshness con-
trol allows for a better load balancing of read-only
transactions. Indeed, since queries do not modify the
database, they may read stale data, i.e. data not per-
fectly fresh, without introducing inconsistency in the
document, database. However, users would accept to
read stale data only if they can control data freshness,
i-e. provided they can express an upper bound on the
staleness of the data they read. Data staleness repre-
sents the divergence between the value of a data copy
on a node and the value the data would have if all
the updates sent to the system would have been ap-
plied to the copy. Controlling the freshness of data ac-
cessed by read-only transactions greatly improves load
balancing since it allows for choosing a node for exe-
cuting the transaction even if it is not perfectly fresh.
This issue has been studied in previous works, but in
the context of either relational data, e.g. [9], or un-
structured data e.g. [11]. Recently, we developped Re-
fresco [5, 4], a middleware that controls lazy replication
and freshness over a database cluster, each node of the
cluster holding a copy of the same relational database.
Freshness requirements are defined through a freshness
model adapted to relational data. Update transactions
are treated as particular case, where data must be per-

fectly fresh. The routing algorithm works as follows.
For ¢ an incoming transaction, it detects for each node
n the update transactions that conflict with ¢ and have
not been executed on n yet. Those update transac-
tions are organized into a dependency graph, denoted
refresh graph, based on their arrival time and their mu-
tual potential conflicts. If ¢ is an update transaction,
it computes the best execution node based on the node
load and the propagation cost. If ¢ is a query, some
refreshment may not be needed if the query accept to
read stale data. Therefore the algorithm prunes the re-
fresh graph until reaching the minimal graph that ful-
fill the query freshness requirements. Pruning is made
according to the quantity of changes made by each up-
date transactions of the refresh graph. Both conflict
detecting and pruning use as much static information
as possible, obtained by parsing transactions code.

In this paper, we address the problem of controlling
the freshness of replicated XML documents, by adapt-
ing the strategy and principles of Refresco to XML
data. Due to the rich nature of XML, the problem
is quite more complex than for relational SQL data.
Particularly, two issues must be revisited : conflict de-
tection and freshness measures definition. First, as ex-
plained above, conflict detection is at the core of our
system, since it is involved in both routing and prun-
ing. In both cases, the issue is to detect conflicts a pri-
ori, before execution by parsing the transactions codes.
Even for SQL expressions, ezact conflict detection is
not always possible using only static information. Pars-
ing the transactions code allows to detect potential con-
flicts by detecting which attribute of which table is po-
tentially read or written. But in general cases, detect-
ing exact conflicts at the tuples granularity comes with
the very high cost of reading the database logs. The
problem is worse with XML documents which may have
recursive and flexible structures. Associated languages
takes this into account through specific operators, al-
lowing seeking at an arbitrary depth in an XML tree
(such as ’//’ in XPath) and filtering nodes according to
their relative position in the tree. This turns the prob-
lem of conflict detection particularly hard, and NP-
complete for XPath expressions[8]. However, as in SQL
transactions, we only need to detect potential conflicts:
our routing and freshness control mechanism is correct
provided no conflict is missed. It is however still cor-
rect (but less efficient) if it detects “false conflicts”. In
this case, the only consequence is that it will execute
unnecessary transactions on a node to prepare it for an
incoming transaction and thus reduce the load balanc-
ing quality. Thus, in our algorithm, whenever it is not
possible to decide whether there is a conflict or not, a
potential conflict is returned. The main issue is then to

minimize the number of such cases. Second, freshness
measures must be adapted as well. As the XML data
model is much richer than the relational model, new
measures that take into account structural and tex-
tual properties of XML documents must be provided to
users, so that they can express freshness requirements
relevant to their application.

In order to simplify the problem, we only consider
XPath based languages. This simplification is rea-
sonable, as most of the XML languages for updates
[3, 10, 6, 7] use XPath to identify the nodes to up-
date, and as XQuery uses XPath expressions to identify
nodes/values to retrieve.

The remainder of this paper is as follows. Section 2
presents the algorithm for detecting conflicts between
two XPath expressions. Section 3 gives a classification
of freshness measures that are relevant for replicated
XML documents. Section 4 concludes.

2. Conflict detection

This section presents an algorithm for detecting po-
tential conflicts between two XPath expressions. There
is a potential conflict if the intersection of their result is
potentially not empty. For example, /a[c]/b and /a/b
expressions may concern the same trees, resulting in a
potential conflict, while /a/b and /a/c are never in con-
flict. For sake of readability, the word “conflict” denote
a potential conflict in the remainder.

To simplify the problem, the conflict detection algo-
rithm we propose does not cover all the XPath facil-
ities. The simplifications we made are: only abbrevi-
ated syntax is recognized; only descendant axis is used;
functions are recognized but not interpreted; only a
predicate by element is accepted; variables are not ac-
cepted; For, If and quantified expressions are not ac-
cepted; expressions of type /a(b|c) are not valid, but
must be specified as /a/b | /a/c.

2.1 Conflict detection algorithm

Let X and Y be XPath expressions. When at least
one of them, let us say X, is composed of different paths
(e.g. X = /a/b UNION /a/c), there is a conflict if at
least one of those paths (e.g. /a/c) is in conflict with
Y (e.g. Y = /a/c). For simple path expressions (e.g.
/a/b), conflict detection is made by inConflict() func-
tion. X.first refers to the first path step of X with-
out “/”, if it exists, and X.rest refers to the remaining
steps (e.g. X=/a/b/c, X.first=a, X.rest=/b/c). Node
and Leaf represent, respectively, an element and an
attribute. Other node types (processing instructions,
text, comments) are not treated here for simplicity.

boolean inConflict(XPath_exp X, XPath_exp Y) {
1. IF (X begins with “//™ or Y begins with “//”) RETURN TRUE;
2. IF (X first is Node and Y first is Leaf) RETURN FALSE;
3. IF (X first and Y first are both Node or both Leaf) {
IF (X.first != Y first) RETURN FALSE;
IF (DisjointPredicates(X, Y) == TRUE) RETURN FALSE;
IF (X.rest==NULL or Y.rest==NULL) RETURN TRUE;
RETURN inConflict(X.rest, Y.rest);

}

4. IF (X.first == "@*" and Y first is Leaf) {
IF (DisjointPredicates(X, Y)==TRUE) RETURN FALSE;
RETURN TRUE;

}

5. IF (X.first=="*"and (Y .first=="*" or Y first is Node)) {
IF (DisjointPredicates(X, Y) == TRUE) RETURN FALSE;
IF (X.rest==NULL or Y.rest==NULL) RETURN TRUE;
RETURN inConflict(X.rest , Y.rest);

}

6. IF ((X.first=="@*" and Y first=="Node") or

(X.first=="*" and Y.first=="Leaf"”)) RETURN FALSE;
7. RETURN inConflict(Y, X); }

The inConflict() function recursively analyzes the
path steps of both expressions, starting from the first
step. When there is a possible conflict, the function
returns true; otherwise, i.e. there is no conflict for
sure, it returns false. Note that, each time there is a
RETURN instruction, the execution terminates: each
condition is tested if the preceding tests failed. The
different cases (1. to 7.) are described below.

1. If one of the expressions starts by “//”, there is no
guaranty that there is no conflict, so the result is true.
This is the case, for example, of expressions /a/b and
/a//c. We can not know if /a//c does not include a
path of type /a/b/c, which is in conflict with /a/b.

2. When first steps of X and Y are Node and Leaf,
respectively, there is no conflict (e.g. X=b/a and
Y=0Qc).

3. When first steps are both Node or Leaf, one of the
following four situations may arise.

a) If first steps are different, there is no conflict.

b) If first steps have disjoint predicates, there is no
conflict (e.g. /a[@c<10] and /a[c>@15]). Function Dis-
jointPredicates() verifies if first steps of two expressions
have disjoint predicates, i. e., returns true if both have
predicates and these are disjoint, false otherwise!.

c) If at least one expression is finished (rest==NULL),
there is a conflict (e.g. X = /a/band Y = /a).

d) If previous tests fail, the remaining steps of each
expression are analyzed.

4. If first steps are “"@*" and Leaf, there is no conflict
when they have disjoint predicates (e.g. X=0*[.<10]

IDue to lack of space, DisjointPredicates() is not defined here.

and Y=0a[.>10]).

5. To compare “*” with “*” or Node, one among three
situations may arise.

a) If they have disjoint predicates (e.g. X=*[.<10] and
Y=a[.>10]), there is no conflict.

b) If at least one of the expressions is finished, there
may be a conflict and the function returns true (e.g.
X=* and Y=a/c).

c) If both expressions have more steps, the function is
recursively called to analyze the remaining steps.

6. There is no conflict if first steps are “@*” and Node
or if they are “*” and Leaf.

7. If the preceding cases fail (e.g. Y.first=="*" and
X.first is Leaf), inConflict(Y, X) tests the symmetrical
cases.

2.2 An example of algorithm execution

To illustrate how noConflict() function works by
a simple example, let X=/a/f UNION /a[b]/@* and
Y=/a[b]/@d. X is a composed expression, so it is nec-
essary to verify that none of the component paths are
in conflict with Y. We start by comparing /a/f with
Y. Both first steps are Node, corresponding to case 3.
These nodes are equal, with DisjointPredicates() return-
ing false (only one of them has a predicate) and expres-
sion /a/f having more steps. Consequently, instruction
d) of case 3 is executed and the function is applied for
the remaining steps: inConflict(/f, /@d). Now, we have
a Node and a Leaf. Accordingly with case 2, /a/f and
Y do not conflict.

Now, we compare the other component path of X
(/a[b]/@*) with Y. The first steps of the path expres-
sions are both Node type, corresponding to case 3.
These nodes are equal, have the same predicate and
have more steps. Consequently, instruction d) of case
3 is executed calling inConflict(/©@*, /@d). This time,
first steps are "@*" and Leaf, corresponding to case 4.
As they have no predicates, there is a conflict between
/alb]/@* and Y.

Since one of the component paths of X is in conflict
with Y, there is a conflict between X and Y.

2.3 Implementation and validation

The conflict algorithm was implemented using Java
1.5.0_06. To verify if XPath expressions are valid, a
XPath parser was developed using JavaCC (Java Com-
piler Compiler) generator. The XPath grammar given
to the generator is a simplification of the W3C XQuery

grammar. This grammar was reduced in order to ac-
cept only XPath expressions (e.g. SORTBY expres-
sions were removed). Then, simplifications indicated
in Section 2 were made. JavaCC generates Top-Down
parsers, so left recursion can not be used. That is why
we made the last simplification.

We verified the correcteness of the implemented al-
gorithm for one step paths (e.g. /a and /b return false),
multiple step paths (e.g. /a/b/c/* and /a/b/c/d re-
turn true), paths including predicates (ex: /a[p] and
/a[NOT p] return false) and composed path expressions
(e.g. /a/b UNION /a/c and /a/b return true).

3 Freshness measures

Fresness measures allow users to specify which diver-
gence between replicas is tolerated in order to choose
the best replica : the replica which minimizes the
response time by minimizing the update propagation
cost. This section classifies and describes new freshness
measures in a semi-structured context with XML doc-
uments. Depending on the application, users choose
the adequate measure.

3.1 Freshness definition

Let x be the last version of an XML fragment (spec-
ified by an XPath expression) and z’ one of its replica.
Fragments may be defined at different granularities :
as coarse as the whole XML document or as fined as
leaves. A freshness measure is a fonction p such that
u(x,x’) is the divergence between z and z’. Diver-
gence is the updates u; one must execute on z’ in or-
der to bring 2’ to the same state than z. We denote
Uy = (u1,us, ..., ux) the sequence of updates already
applied on = but not yet propagated to .

3.2 General measures

This section presents general (not specific to XML
replicas) freshness measures.

Boolean measure This measure indicates if there is
at least one update missing on z’.

0 if Uy =10
bool(w,2") ={ | 4 Upr # 0

Temporal measure This measure indicated the du-
ration since when the fragment x’ has become obsolete.

age(z,z') = dlu(z) — dlu(z’),

where dlu(t) is the date of the last update made on
a given XML fragment t¢.

Versioning measure This measure indicates the
number of updates not yet executed on z’.

version(z,z') = Card(U,),

where Card(Us,/) is the cardinal of Uy .

Even if those measures are well-known, they find
new usages in XML context. For instance, version mea-
sure can be used in append-only RSS feed management
to express the number of news missing in the feed.

3.3 Content-based measures

As XML documents usually have textual leaves, we
now define freshness measures for the content of nodes.
In this section T'C(t) returns the textual content of the
fragment rooted by ¢.

String length This measure indicates the differ-
ence of textual length between x and z’.

string _length(z,z') =
|length(T'C(x)) — length(TC(z))|,

where length(a) returns the length of a.

Chars This measure indicates the number of charac-
ters that have changed between = and .

chars(z, ") = Levenshtein(TC(z), TC(z')),

where Levenshtein(a,b) return the minimal number
of char operations needed to transform a to b. For
example, Levenshtein(“a kitten”, “a sitting”)=38, with
the following tranformations :

1. “a kitten” — “a sitten” : substitution of 'k’ for ’s’

2. “a sitten” — “a sittin” : substitution of ’e’ for i’

3. “asittin” — “a sitting” : insert ’g’ at the end
Words This measure indicates the number of words
that have changed between z and z’. This measure can
be seen as the same distance than chars, with sentence
in place of words and words in place of letters.

words(z,z') =
Levenshtein(s2w(TC(x)), s2w(TC (")),

where s2w(s) is the representation of a sentence
s in as a list of words. With the preceding ex-
ample, s2w("a Fkitten")=["a", "kitten"], s2w("a sit-
ting")=["a", "sitting"[] and words(z,z’)=1 with the sub-
stitution of the word "kitten" by "sitting", the word
"a" remaining the same.

Numerical measures We consider text nodes with
numerical content. Such nodes can be the price of an
item, the quantity of an article in a store, the value of
an auction, and so on.

num(z, z') = value(x) — value(z'),

where value(x) is the numerical value of the text
node. A variant of this measure is the absolute numer-
ical distance absnum .

absnum(z,z") = |[num(z, 2’)]

Another variant is based on relative distance be-
tween z and z’.

| value(z)—value(z’) |

percent(,x') = value(z)

3.4 Tree-based measures

Freshness measures presented above focus on nodes
content modification: the structure of the document
remain the same, only the value of somes nodes have
changed. Since XML documents have a tree structure,
we now define tree-based freshness measures. These
measures reflect how much a subtree of an XML doc-
ument have changed. Let = be an XML element node
and z’ its replica on another node. The subtree rooted
by x is denoted tree(x).

Height /Width These measures indicate the differ-
ence between the height (respt. width) of ¢ree(x) and
the height (respt. width) of tree(a’).

height(xz,x') = |heigth(x) — heigth(a')]
widthg(z, z') = |width(z,d) — width(z', d)|,

where height(t) is the longest path from ¢ to any
element node of a given XML subtree tree(t) and
width(t,d) is the maximum number of element nodes
at a the depth d of a given subtree tree(t). For in-
stance, in a document representing a book composed
of chapters, sections and so on, width; can be used to
bound the number of sections inserted or deleted in a
given chapter.

Siblings This measure indicates the number of sib-
lings that have changed between x and z’.

nb_siblingSagis,type(z, ') =
|sbl(x, axis, type)) — sbl(x’, axis, type)|,

where sbl(elt, axis, type) is the number of siblings of
an element node elt, for a given axis (preceding, fol-
lowing, any) and with a given node type. For instance,
nb_siblings foliowing,”cd» can be used to measure the
number of CDs inserted after the last CD bought by
the user in a XML compact disc catalogue.

4. Conclusion and future work

This paper presents new contributions for query load
balancing over replicated XML documents through
freshness control. As far as we know, no other pre-
vious work addresses a similar issue. We describe our
algorithm for conflict detection, which is the base for
transaction routing and freshness computation. We
also present a classification of freshness measures suit-
able for XML data management, with formal defini-
tions. As future work, we plan to formally prove the
correctness of our algorithm and extend it to compute
the measures defined in Section 3. Then, the algorithm
will be implemented and performances evaluated.

References

[1] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu,
and T. Milo. Dynamic xml documents with distribu-
tion and replication. In ACM SIGMOD International

Conference, pages 527-538, 2003.
[2] T. Grabs and H.-J. Schek. Powerdb-xml: Scalable xml

processing with a database cluster. In Blanken, Grabs,
Schenkel and Weikum , editor, Intelligent Search on

XML Data, chapter 13, pages 193—206. Springer, 2003.
[3] A. Laux. XUpdate Working Draft. www.xmldb-

org.sourceforge.net /xupdate/xupdate-wd.html, 2000.
[4] C. Le Pape and S. Gangarski. Replica Refresh Strate-

gies in a Database Cluster . In VECPAR’06 Workshop
on High-Performance Data Management in Grid En-

vironments, Rio de Janeiro, (Brazil), 2006.
[5] C. Le Pape, S. Gancarski, and P. Valduriez. Re-

fresco: Improving Query Performance Through Fresh-
ness Control in a Database Cluster. In Interna-
tional Conference on Cooperative Information Systems

(CoopIS), pages 174-193, Larnaca (Cyprus), 2004.
[6] P. Lehti. Design and implementation of a data ma-

nipulation processor for an XML query language.

http://www.lehti.de/beruf/diplomarbeit.pdf, 2001.
[7] P. Poulard. XCL Specifica-

tion - the XML Control Language.
http://disc.inria.fr/perso/philippe.poulard/xml/active-

tags/xcl/xcl.html, March 2006.
[8] M. Raghavachari and O. Shmueli. Conflicting xml up-

dates. In EDBT International Conference, pages 552—

569, 2006.
[9] U.Rohm, K. Bshm, H.-J. Schek, and H. Schuldt. FAS

- A Freshness-Sensitive Coordination Middleware for a
Cluster of OLAP Components. In VLDB International

Conference, pages 754-765, Hong Kong (China), 2002.
[10] I. Tatarinov, Z. G. Ives, A. Y. Halevy,

and D. S. Weld. Updating XML.
www.cis.upenn.edu/ “zives/research /updatingXML.pdf,

May 2001.
[11] H. Yu and A. Vahdat. Design and evaluation of a

conit-based continuous consistency model for repli-
cated services. ACM Transaction on Computer Sys-
tems, 20(3):239-282, 2002.

