
Optimistic path-based concurrency control over XML
documents

Djamel Berrabah
LIP6 - ANR-05-MMSA-0011
104 av. Président Kennedy,

Paris, France
djamel.berrabah@lip6.fr

Stéphane Gançarski
LIP6 - ANR-05-MMSA-0011
104 av. Président Kennedy,

Paris, France
stephane.gancarski@lip6.fr

Sarah Kaddour Chikh
LIP6 - ANR-05-MMSA-0011
104 av. Président Kennedy,

Paris, France
kaddours@lip6.fr

Cécile Le Pape
LIP6 - ANR-05-MMSA-0011
104 av. Président Kennedy,

Paris, France
cecile.lepape@lip6.fr

ABSTRACT
We present a new approach for concurrency control over
XML documents. Unlike most of other approaches, we use
an optimistic scheme, since we believe that it is better suited
for Web applications. The originality of our solution resides
in the fact that we use path expressions associated with
operations to detect conflicts between transactions. This
makes our approach scalable since conflict detection except
in few cases does not depend on the database size nor on the
amount of modified fragments. In this paper, we describe
and motivate our concurrency mechanism architecture, we
describe the conflict detection algorithm which is the core
of our proposal and exhibit first experimental results.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—concurrency

General Terms
Algorithms, Management, Verification

Keywords
XML, XPath, transactions, optimistic concurrency control

1. INTRODUCTION
As the amount of XML data on the World Wide Web is
constantly increasing and since many contents on the Web
are dynamic, i.e. their content can change over time, up-
dating XML becomes crucial for Web applications. For in-
stance, ATOM publishing protocol allows multiple users to
concurrently update XML documents called “feeds”, while

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSTST 2008 October 27-31, 2008, Cergy-Pontoise, France
Copyright 2008 ACM 978-1-60558-046-3/08/0003 ...$5.00.

feed readers periodically poll the feed server for new feed
entries (XML fragments) in the feed.

Several update languages for XML have been proposed [1].
XUpdate [20] is an XML-based language. It uses XPath
to identify a set of nodes, then specifies whether to insert,
delete or update these nodes. A set of extensions to XQuery
has been proposed by members of the W3C XQuery work-
ing group and Patrick Lehti. Variations on these extensions
have been implemented and it seems likely that XQuery Up-
date[17] will form the basis of the update syntax in XQuery1.
With updating facilities, concurrent access to XML docu-
ments becomes a more and more important issue in order to
improve access performance on XML documents.

It has been shown in [4] that conventional concurrency
control methods involved in CVS, relational, and object ori-
ented database systems do not suite XML data well. These
methods do not provide a high enough degree of concur-
rency for XML. Several approaches have been proposed to
deal specifically with XML document concurrency control.
Most of these solutions are based on locking. Locking based
protocols use various types of locks to determine whether a
transaction can proceed. Shared locks and exclusive locks
are two basic types of locks. A transaction can proceed if
the lock on the desired object is compatible with locks held
by other transactions on the same object. Locking based
protocols can be classified as follow:

• Xpath-based locking. Path lock protocols either
lock a simplified form of XPath expression [5, 3, 13],
use path locks propagation or satisfiability [5, 6].

• Node-based locking. Several protocols are based on
DOM operations [10, 12, 13]. Different lock modes are
defined here such as locks on node children and locks
on individual nodes or pointers between them.

• Graph locking. A directed acyclic graph locking pro-
tocol is proposed in [9]. Locks in this protocol are
associated with the nodes in a DataGuide, as in [15].

Due to the pessimistic nature of locking, experiments [11]
show that locking overhead may be huge, mainly for applica-
tions with few or without conflicts. In relational databases,
1Since Fri, 14 Mar 2008, XQuery Update Facility 1.0 is a
W3C Candidate Recommendation

optimistic concurrency control (OCC) is an alternative to
locking when the conflict rate is low. In optimistic ap-
proach, a data is only locked when updates are written in
the database (update phase). Therefore, the data can be re-
trieved and updated by other users at any time other than
during this phase. OCC allows the data to be read simul-
taneously by multiple users and users are blocked less often
than its pessimistic locking counterpart [14]. OCC is better
suited to Web applications since it does not require lock-
ing ressources during the working phase. This is important
since, in Web applications, peers are likely to fail and would
block other participants if they hold locks.

To the best of our knowledge, there is only one arti-
cle [16] which proposes two optimistic mechanisms based
on snapshot for concurrency control over XML documents:
OptiX and SnaX. To perform validation phase, for each
transaction Ti, the system keeps track of the set of nodes
read, denoted RS(Ti), and the set of nodes written, de-
noted WS(Ti). In OptiX, a transaction Ti passes valida-
tion if for all concurrent transaction Tj that already vali-
dated, WS(Tj) ∩ RS(Ti) = ∅. In SnaX, a transaction Ti

is validated if for all concurrent transaction Tj that already
validated, WS(Tj) ∩WS(Ti) = ∅.

An important point is that concurrency is not allowed dur-
ing the validation phase: only one transaction can be vali-
dated at a time. Thus, validation phase has to be as quick as
possible. In order to improve the validation phase duration,
our approach is the following. We assum that both queries
and updates are XPath-based. An update statement selects,
via Xpath, one or more target nodes for the update, and per-
form an update operation (insert, delete, update, etc.) on
these target nodes. In this context, we aim to reduce the
validation phase duration by detecting conflicts based on
the transaction code. The set of XPath expressions used for
read (resp. write) operations called ReadPathSet and de-
noted RPS(i)) (resp. WritePathSet, denoted WPS(i)) are
extracted from the code of each transaction Ti. This extrac-
tion is done either at compile time if the transactions are
stored procedures, or at runtime during the working phase
for on-demand transactions. During the validation phase,
ReadPathSets and WritePathSets are compared to detect
conflicts. The first advantage of this approach is that no
additional work is done during the read phase. More im-
portant, in most cases conflict detection is not dependent
on the size of the database nor on the amount of modi-
fied fragments. On the opposite, in the approach of [16], the
ReadSets and WriteSets may become very large if the Xpath
expressions are not narrow. The drawback of this code-based
conflict detection is that not every conflict can be detected
from only XPath expressions comparison, resulting in false
positive conflict detections. We thus propose several ideas
to reduce the number of false positive conflict detection, for
instance by relying on the XML Schema whenever possible
or by taking into account the semantics of operations.

The paper is organized as follows. Section 2 presents pre-
liminary XML models for transaction management. Sec-
tion 3 shows the global architecture of our concurrency con-
trol mecanism. Section 4 presents our path-based conflict-
detection method. In section 5 we present implementation
results to estimate the efficiency of our approach. Section 6
concludes.

2. TRANSACTION MANAGEMENT IN XML
DOCUMENTS

This section presents the SchemaGuide associated with a
document, the access and transaction models and a running
example to show how XML data is accessed by transactions.
It also describes globally how our mechanism works.

2.1 XML Schema and SchemaGuide
Let us consider an example of XML document on Fig 1.

We assume that documents are associated with a document
type, here an XML schema.

XML Schema [18] is an XML-based alternative to DTDs
which is more powerful than DTDs. It describes and re-
stricts the content of XML documents. Due to lack of space,
the XML Schema, associated to the XML document in Fig-
ure 1, is not given. Instead, we show the Schema Guide
associated to the document where every path in the docu-
ment has exactly one path in the Schema Guide. A Schema
Guide is a simplified representation of the XML Schema,
which sums up the structural relationships between nodes.
It is based on the DataGuides [8] definition and is obtained
by transforming the XML Schema.

2.2 Access model
Since most of XML languages are based on XPath, docu-

ment data are accessed using XPath expressions. An access
to a document is an operation over this document to re-
trieve, add, modify or remove a fragment which can be a
node or a sub-tree. We distinguish two kinds of operations:

• Read-operation: a read-operation is a query, noted
select(p), on the document D where p is an XPath ex-
pression. The result of such an operation is composed
of all the fragments located by the XPath expression.

• Write-operation: a write-operation changes the con-
tent of the document D. The possible write-operations
are append, insert-before, insert-after, update and delete.

– append(f,p) This operation adds the fragment f
as a descendent of the node(s) located by the
XPath expression p.

– insert(f BEFORE p) This operation inserts the
fragment f such as its root is the preceding sibling
of each node matching p.

– insert(f AFTER p) This operation inserts the frag-
ment f such as its root is the following sibling of
each node matching p.

– update(n,p) This operation replaces the node(s)
located by the XPath expression p by the new
node n.

– delete(p) This operation removes the node(s) lo-
cated by the XPath expression p.

More complex write operations, such as replace or move,
can be defined by combining the preceding operations.

2.3 Transaction model
Let T1, T2, ..., Tm be transactions. A transaction is a se-

quence of operations noted Ti(O1, O2, ..., On) where Oi,i=1,n

is either select, append, insert-before, insert-after, update or
delete. As shown above, each operation Oi is associated with

XML Document

<company>

<employee id="em65">

<lname>Dubois</lname>

<fname>Christian</fname>

<address>

<number>8</number>

<street>Skolem</street>

<city>Paris</city>

</address>

<child age="12" size="1.65">

<fname>Julien</fname>

<school>

<name>Jean-Moulin</name>

<address>

<street>Gabriel Peri</street>

<city>Saint Denis</city>

</address>

</school>

</child>

<salary>2000</salary>

</employee>

<employee id="em45">

<lname>Quimousse</lname>

<fname>Pierre</fname>

<address>

<street>Oscar Wilde</street>

<city>Juvisy</city>

</address>

<child age="17" size="1.80">

<fname>Jean</fname>

<fname>Pierre</fname>

<fname>Simba</fname>

</child>

<salary>2100</salary>

</employee>

</company>

Associated Schema Guide

<company>

<employee id=""><lname/><fname/>

<address><number/><street/><city/>

</address>

<child age="" size=""><lname/><fname/>

<school>

<name/>

<address>

<number/>

<street/>

<city/>

</address>

</school>

</child>

<salary/>

</employee>

</company>

Figure 1: An XML document and its Schema Guide

an XPath expression p to locate the set of nodes to be ac-
cessed. When a transaction has executed all its operations,
it asks for validation and enters the validation phase.

In the following, we consider the transactions defined be-
low. For sake of simplicity, we only consider transactions
composed of a single operation.

T1 : update(<fname> Alain </fname>),//fname[1]

T2 : delete(/company/employee/address/number)

T3 : insert(<fname>Henri</fname>
AFTER //employee[lname =′ Dubois′]/fname))

T4 : insert(<fname>Jean</fname>
BEFORE //employee[lname =′ Dubois′]/fname)

T5 : update(<fname> Louis </fname>, /company/
employee/child[@age = 12]/fname[. =′ Julien′])

T6 : update(<fname> John </fname>, /company/
employee/child[@size = 1.62]/fname[. =′ Julien′])

T7 : insert(<fname>Henri</fname>
AFTER //employee[lname =′ Dubois′]/lname)

T8 : insert(<Age>45</Age>)
AFTER //employee[lname =′ Dubois′]/fname[1])

2.4 Optimistic concurrency control
In our concurrency control mechanism, a transaction Ti

follows three phases: a working phase, a validation phase
and an update phase.

1. In the working phase, the read-operations are per-
formed on the document and the changes carried out
by the write-actions are stored in a temporary space
dedicated to this transaction. During this phase, the
RPS , the WPS (cf. Section 1) and the operation se-
mantics are extracted from the transaction code or re-
trieved if this was done during compile time.

2. When the transaction completes, it requests its vali-
dation phase. Throughout this phase, a check for con-
flicts between the transaction Ti and the concurrent
ones is performed. Validation phase of a transaction
Ti is successful if for all concurrent transactions Tj al-
ready validated, there is no conflict between their re-
spective RPS and WPS. This ensure the serializability
of concurrent executions.

3. If the validation phase is successful, the changes car-
ried out by the transaction become permanent in the
document (update phase), otherwise the transaction
is aborted, its temporary space freed and it will be
restarted.

3. GLOBAL ARCHITECTURE
Figure 2 shows the internal architecture of our mechanism.
It relies on the following modules:

• The Diff Processor is based on hierarchical change
detection algorithms [2]. It compares the old and new
version of an XML document and stores differences
in a delta file. The delta file format is based on a
description language such as XUL [19] and XUpdate
[20]

Figure 2: XML OCC architecture overview

• The Transaction Code Manager gets the transac-
tion code, extracts path expressions (RPS and WPS)
and combines them with path expressions of the con-
current transactions.

• The Conflict Detection Algorithm detects conflicts
between operations relying on their path expressions
given by the Transaction Code Manager.

• The Parser allows to load a document and generate
its Schema Guide (if does not exist). It may also be
called by the conflict detection algorithm if an access
to the Schema Guide or to the document is necessary.

• The Patching Processor receives the deltas from the
diff processor and applies them to the documents to
make changes visible to subsequent transactions.

During the working phase, the client asks for an XML doc-
ument (old-version) on which its transaction is performed.
The Parser loads this document into memory, generates its
Schema Guide from its XML Schema (if not already done)
and saves it in the XML repository. A copy of the XML doc-
ument is sent to the client (new-version), and all subsequent
updates are directed to this copy. During the validation
phase, the Conflict Detection Algorithm checks conflicts be-
tween the transaction path expressions, i.e. if the path ex-
pressions lead to the same fragments in the XML document.
If necessary, the Parser uses either the Schema Guide or the
XML document to continue checking conflicts according to
the possible cases (see section 4.1). If the validation suc-
ceeds, then the transaction enters the update phase. The
Patching Processor receives the delta file from the Diff Pro-
cessor and applies it to the document to make changes of
the transaction global in the document.

4. CONFLICT DETECTION
This section presents how we manage the validation phase.
Our method is based on a path-based conflict detection al-
gorithm presented in Section 4.2. This algorithm detects
potential conflicts between operations, based on their path

expressions.There is a potential conflict between two opera-
tions if, when evaluating their path expressions, there may
have at least one node in common. As potential conflicts in-
clude actual conflicts, using potential conflict ensure that the
algorithm is correct: it detects all the actual conflicts. How-
ever, in some cases, potential conflict may not correspond
to actual conflicts, as it was the case with a preliminary ver-
sion of this algorithm introduced in [7]. This would lead to
unnecessary transaction aborts, which raises a performance
problem. We first show in Section 4.1 the main difficult
issues raised by accurately detecting potential conflicts, in
order to minimize the number of unnecessary aborts. Then,
in Section 4.2, we present the detection algorithm and show
how it solves the above mentionned issues.

4.1 Main issues
There are mainly three cases where it is difficult to decide

whether two XPath based operations are in conflict or not.
Each of them requires a different solution, as explained in
the following.

4.1.1 Operations semantics
Two write operations can be considered in conflict whereas

they are not, if we do not take into account the semantics
of the operations, but only the path expression they are
based on. Two operations, with conflicting paths, may be
commmutative and thus not conflicting. This depends on
the operation type. For instance, in Section 2.3., T3 and
T4 are defined over the same path expression, thus would
be conflicting according to their path expression. However,
they are not conflicting since one inserts a sibling on the left
of the target node, while the other inserts a sibling at the
right of the target node.

On the other end, two operations can be in conflict even
if their path expressions are not. For instance, in T7 and T8

path expressions are not in conflict, but T8 insert a node age
after the first fname of the employee ’Dubois’ while the T7

insert a node fname as the first fname for the same employee.
Thus, T7 and T8 are conflicting.

Those cases are detected in our algorithm by the inCon-
flict() function (see section 4.2).

4.1.2 XPath wildcards and document types
As XPath expressions may contain wildcards such as ’//’

and ’*’, it may be not possible to decide if two expressions
are in conflict, just by considering their path.

Consider transactions T1 and T2 of Section 2.3. If T1 and
T2 execute concurrently on the example document, they are
not conflicting. However, they may be conflicting with re-
spect to another document, because ’//’ may represent any
path. Thus the algorithm would return a potential conflict.
Fortunately, the problem can be solved in most cases if doc-
uments are typed. Indeed, documents types specify which
elements can contain which other elements, which elements
are optional or required, and which elements contain data.
These specifications allow us to check expressions which are
not developed, i.e. those containing ’*’ or ’//’. For instance,
we can infer that there is no conflict between T1 and T2 by
checking in the document type that number is a leaf node,
thus can not be an ancestor of fname.

In our approach, we assume that documents are typed
through a corresponding XML Schema. For sake of per-
formances, the schema is transformed into a Schema Guide

which contains all the possible paths a document may have
with respect to the schema. Functions isAncestor() and is-
Father() use the SchemaGuide to solve cases with wildcards,
respectively ’//’ and ’*’ (see section 4.2).

4.1.3 Undecidability
Some times, and because we are using static information,

exact conflict detection is not decidable, even if using docu-
ment types.

Consider the transactions T5 and T6 defined in Section
2.3. There is no way to determine if the two transactions
actually conflict, since there may or not exist a node with
both @age = 12 and @size = 1.62, but this only depends
on the current document state. In this case, we propose to
extend our path conflict detection by testing if a real con-
flict happened. This can be achieved in two different ways
and depends whether nodes are identified or not. If nodes
are identified, then it is sufficient to test if the two possibly
conflicting path expressions actually touch nodes in com-
mon. This can be implemented by maintaining an index on
the modified nodes, or by labbeling nodes with transaction
identifiers, as in [16]. However, this implies an overhead due
to nodes identification for all documents. To avoid this over-
head, a simple solution is to evaluate path expressions, by
combining path expressions of the possibly conflicting opera-
tion to check whether there is actually a conflict between the
two path expressions. In the case of T5 and T6, we send the
query /company/employee/child[@age = 12][@size = 1.62]
on the last committed version of the document, and conclude
that there is a conflict between T5 and T6 if and only if the
query returns a non-empty set of nodes. This is achieved in
our algorith by the function exists() (see Section 4.2).

4.2 Path-based conflict detection
This Section presents our conflict detection algorithm.

The algorithm takes as input two concurrent operations and
returns true if a potential conflict exists.

Let x and y be operations. We note X the path expression
of x. X.op is the operation semantics. In the current version
of the algorithm we take into account two kinds of oper-
ation semantics: insert-before (resp. insert-after), denoted
BEFORE (resp. AFTER).

The main function inConflict()2 decompose binary expres-
sions (e.g. X = /a/b UNION /a/c) if they exist, into simple
expression (e.g. /a/b and /a/c), depending to the seman-
tic of operations (X.op), calls inConflictSExp() and isPreced-
ingSibling() functions, if necessary, and returns false if the
two operations are not in conflict, true otherwise2.

The inConflictSExp() function recursively analyzes the path
steps of both expressions, starting from the first step. When
there is a possible conflict, the function returns true; other-
wise, i.e. there is no conflict for sure, it returns false. Note
that, each time there is a RETURN instruction, the execu-
tion terminates: each condition is tested if the preceding
tests failed. The main components of the inConflictSExp()
function are explained in the following points:

• X.first refers to the first path step of X without ’/’,
if it exists, and X.rest refers to the remaining steps
(e.g. X=/a/b/c, X.first=a, X.rest=/b/c). Node, At-
tribute and Leaf represent, respectively, an element, an
attribute and the other node types (processing instruc-
tion(), text(), comment).

boolean inConflictSExp(XPath exp X, XPath exp Y) {
1. If (X begins with’/’ and Y begins with’//’)

return Parser.isAncestor(X, Y.first);
If (X begins with ’//’ and Y begins with ’/’)
return Parser.isAncestor(Y, X.first);
If (X begins with ’//’ and Y begins with ’//’) {
If (X.first==Y.first) return (inConflictSExp(X.rest,Y.rest);
return ((Parser.isAncestor(X, Y.first)
or Parser.isAncestor(Y, X.first)); }

2. If(X.first and Y.first are both Node,Attribute,Leaf or ’*’) {
If (X.first != Y.first) return false;
If (X.rest==null or Y.rest==null)return true;
If (X.second and Y.second are both Predicate) {
If(attribute names are different){
If(Parser.exist(X[X.second][Y.second]==false)
return false;
}else if(DisjunctPredicate(X.second,Y.second)==true)
return false; }

return inConflictSExp(X.rest,Y.rest); }
3. If (X begins with ’*’ and Y.first is Node) {

If (X.rest==null)return true;
If(Parser.isFather(Y.first, X.second)==false)
return false;
return inConflictSExp(X.rest, Y.rest); }

4. If (X.first is Node and Y begins with ’*’)
return inConflictSExp(Y,X);

5. If (X.first==’@*’ and Y.first is Attribute) {
If (X.rest==null)return true;
return inConflictSExp(X.rest, Y.rest); }

6. If (X.first==’@*’ and (Y.first is Leaf or Node))
return False

}

Figure 3: Conflict detection for XPath expressions
X and Y.

• Function DisjointPredicates() verifies if the first steps of
two expressions have disjoint predicates, i.e. returns
true if both have predicates and these are disjoint, false
otherwise2.

• Function exist() is called when the algorithm deals with
two path expressions containing predicates with differ-
ent attribute names. This function combines this pred-
icates in a single expression and queries the document.
If the result of the query is a non-empty set of nodes,
then this function returns that there is a conflict2.

• Function isAncestor() (resp. isFather()) verifies, for two
expressions X and Y with Y contains ’//’ (resp. ’*’),
if the last step of X is an ancestor (resp. a father) of
the step following ’//’ (resp. ’*’) in Y2.

5. IMPLEMENTATION AND EVALUATION
We implemented two main part of the architecture pre-
sented in Section 3: the Conflict Detection Algorithm and
the Parser. Both are implemented in Java. Experiments
were led on a PC with two 1.66 GHz processors and 2GBytes
of core memory, under Microsoft Windows Vista and Linux
operating systems.

The Parser is devoted to two tasks: loading the XML
document using JDOM and generating the Schema Guide,
if does not exists, using XSLT. We measured the time for
each task, on the example document. Those tasks where

2Due to lack of space, InConflict(), IsPrecedingSibling, IsFa-
ther, Exist() and DisjointPredicates() functions are not pre-
sented here.

performed in approximately respectively 100 ms. and 200
ms. Those figures are reasonable if we keep in mind that
a document is loaded only if it is not present in the server
cache memory.

Performances of the detection algorithm are more chal-
lenging, since it is the core of our approach and is used for
each couple of operations of concurrent transactions. We ran
several experiments, with different operations types : sim-
ple types, that do not require access to the Schema Guide,
complex types containing either ’//’ or ’*’ and undecidable
types that require access to the document.

For the first operation type, the decision time is always
much less than 1 ms. For the the second operation type, the
decision time is in the order of some (between 1 and 4) ms.
For the third operation type, the time of checking depends
on the document size.

Those results are very encouraging since the optimistic
approach requires a very fast validation phase. Furthermore,
the transaction code can be sent to the detection algorithm
during the working phase, so that the algorithm, if idle,
can start to check for conflicts in parallel with transaction
execution on the client, which even speeds up the validation
phase.

6. CONCLUSION AND FUTURE WORK
This paper presents a new approach for concurrency control
over XML documents. We defined the context of our work:
transactions for XML and optimistic concurrency control.
Then, we showed how we manage the validation phase by
detecting potential conflicts between operation, based on the
XPath expressions that locate nodes manipulated by oper-
ations. Our solution is based on a conflict detection algo-
rithm and we described the main issues we solved so that
the algorithm detects more conflicts than the previous ver-
sion introduced in [7]. On opposite to most of the existing
approaches that use locking, we use an optimistic concur-
rency control scheme. As mentioned in the introduction,
this scheme is better suited to Web applications where few
conflicts happen because most of the transactions are read-
only and because the probability of a client to fail and block
other participants if it holds locks is higher.

As far as we know, [16] is the only other approach for
optimistic concurrency control over XML data. The main
difference with us is that they perform conflict detection
at the node level, while we detect potential conflicts at the
path expression level. This is more efficient mainly when
the database is large (our approach does not depends on
the database size) and/or when transactions manipulate big
amounts of data. Indeed, in this case, node-based conflict
detection has to compare big sets of updated nodes to con-
clude whether there is a conflict or not.

We implemented a first version of our system and per-
formed experimental validation of our ideas. As shown in
section 5, our results are very promising. However, we must
run our system over different workloads and/or benchmarks,
and compare its results with other approaches. We are
curently investigating the two following issues: (1) take more
semantics into account, for instance when one operation
deletes a subset of the set of nodes that the other opera-
tion deletes, and (2), have a very fast update phase. To this
end, we will choose the best Diff and Patch algorithms and
implement the Diff and Patching Processors (see section 3).

7. REFERENCES
[1] R. Bourret. Xml and databases. In Internet report,

2005. Available at http://www.rpbourret.com/xml/
XMLAndDatabases.htm.

[2] S. S. Chawathe. Comparing hierarchical data in
external memory. In 25th Very Large Data Base
Conference (VLDB), pages 90–101, Edinburgh,
Scotland,UK, 1999.

[3] E.-H. Choi and T. Kanai. Xpath-based concurrency
control for xml data. In the 14th Data Engineering
Workshop, page 302?313, Ishikawa, Japan, 2003.

[4] S. Dekeyser and J. Hidders. Path locks for xml
document collaboration. In 3rd Conference on Web
Information Systems Engineering (WISE), pages
105–114, Singapore, 2002.

[5] S. Dekeyser and J. Hidders. A commit scheduler for
xml databases. In The fifth Asian-Pacific Web
Conference, pages 83–88, Xian, China, 2003.

[6] S. Dekeyser, J. Hidders, and J. Paredaens. A
transaction model for xml databases. World Wide
Web journal (WWW), 7(2):29–57, 2004.

[7] S. Gancarski, C. L. Pape, and A. L. Gancarski.
Freshness control of xml documents for query load
balancing. In Proc. of Xantec’07 (DEXA workshops),
pages 35–39. IEEE Computer Society, 2007.

[8] R. Goldman and J. Widom. Dataguides: Enabling
query formulation and optimization in semistructured
databases. In 23th Very Large Data Base Conference
(VLDB), pages 436–445, Athens, Greece, 1997.

[9] T. Grabs, K. Böhm, and H.-J. Schek. Xmltm:
Efficient transaction management for xml documents.
In ACM International Conference on Information and
Knowledge Management (CIKM), pages 142–152,
McLean, VA, USA, 2002.

[10] M. Haustein and T. Härder. Fine-grained management
of natively stored xml documents. In Internal Report,
2004. Available at:
http://131.246.18.10/pubs/papers/HH04.Int-
Report.html.

[11] M. Haustein, T. Härder, and K. Luttenberger. Contest
of xml lock protocols. In 32nd international conference
on Very large data bases(VLDB), pages 12–15, Seoul,
Korea, 2006.

[12] S. Helmer, C. Kanne, and G. Moerkotte. Evaluating
lock-based protocols for cooperation on xml
documents. ACM SIGMOD Record, 33(1):58–63, 2004.

[13] K.-F. Jea, S. Chen, and S. Wang. Locked-based
concurrency control for xml document models. In The
International Computer Symposium, pages 165–172,
Taiwan, 2002.

[14] H. Kung and J. Robinson. On optimistic methods for
concurrency control. ACM Transactions on Database
Systems (TODS), 9(4):213–226, 1981.

[15] P. Pleshachkov, P. Chardin, and S. O. Kuznetsov.
Xdgl: Xpath-based concurrency control protocol for
xml data. In M. Jackson, D. Nelson, and S. Stirk,
editors, BNCOD, volume 3567 of Lecture Notes in
Computer Science, pages 145–154. Springer, 2005.

[16] Z. Sardar and B. Kemme. Don’t be a pessimist: Use
snapshot based concurrency control for xml. In The
22nd International Conference on Data
Engineering(ICDE), page 130, Atlanta, GA, USA,

2006. poster paper.

[17] Xquery update facility 1.0. http://www.w3.org/TR
/xquery-update-10, August 2008.

[18] Xml schema. http://www.w3.org/XML/Schema,
October 2004.

[19] Introduction to xul. http://developer.mozilla.org/en
/docs/Introduction to XUL, January 2005.

[20] Xupdate-xml update language. http://xmldb-org
.sourceforge.net/xupdate/, November 2000.

